Ремонт Дизайн Мебель

Поликарбонат для навеса, какой выбрать. Поликарбонат, что это такое, сотовый поликарбонат размеры, применение, способы резки, крепления Российская номенклатура марок

Поликарбонат

Структурная формула поликарбоната - эфира бисфенола А

В случае фосгенирования в условиях межфазного катализа поликонденсация проводится в два этапа: сначала фосгенированием бисфенолята А натрия получают раствор смеси олигомеров, содержащих концевые хлорформиатные -OCOCl и гидроксильные -OH группы, после чего проводят поликонденсацию смеси олигомеров в полимер.

Переработка

В процессе синтеза получают гранулированный поликарбонат, который в дальнейшем может перерабатываться методами литья под давлением или экструзией. В процессе экструзии может быть получен сотовый и монолитный поликарбонат.

Монолитный поликарбонат - очень стойкий материал, он может применяться для изготовления пуленепробиваемого стекла. Свойства монолитного поликарбоната весьма схожи со свойствами полиметилметакрилата (известного также как акрил), но монолитный поликарбонат более прочен и более дорог. Этот чаще всего прозрачный полимер имеет лучшие характеристики светопроницаемости, чем традиционное стекло .

Свойства и применение поликарбоната

Поликарбонат (ПК, PC) обладает комплексом ценных свойств: прозрачностью, высокой механической прочностью, повышенной устойчивостью к ударным нагрузкам, незначительным водопоглощением, высоким электрическим сопротивлением и электрической прочностью, незначительными диэлектрическими потерями в широком диапазоне частот, высокой теплостойкостью, изделия из него сохраняют стабильность свойств и размеров в широком интервале температур (от -100 до +135°С).

Перерабатывают поликарбонат всеми методами, известными для термопластов. Качество изделий из него зависит от наличия влаги в перерабатываемом материале, условий переработки и конструкции изделия.

Перечисленные выше свойства поликарбоната обусловили его широкое применение во многих отраслях промышленности взамен цветных металлов, сплавов и силикатного стекла. Благодаря высокой механической прочности, сочетающейся с малым водопоглощением, а также способности изделий из него сохранять стабильные размеры в широком интервале рабочих температур, поликарбонат успешно используется для изготовления прецизионных деталей, инструментов, электроизоляционных и конструкционных элементов приборов, корпусов электронной и бытовой техники и т.д.

Высокая ударная вязкость в сочетании с теплостойкостью позволяет использовать поликарбонат для изготовления электроустановочных и конструкционных элементов автомобилей, работающих в жестких условиях динамических, механических и тепловых нагрузок.

Хорошие оптические свойства (светопроницаемость до 89%) обусловили применение поликарбоната для изготовления светотехнических деталей светофильтров, а высокая химическая стойкость и стойкость к атмосферным явлениям – для светорассеивателей ламп различного назначения, в т.ч. эксплуатирующихся на улице, и автомобильных фар. Также, поликарбонат широко применяется в строительстве в виде сотовых и монолитных панелей (сотовый поликарбонат и монолитный поликарбонат).

Биологическая инертность поликарбоната и возможность подвергать изделия из него стерилизации сделали этот материал незаменимым для пищевой промышленности. Из него изготавливают посуду для продуктов питания, бутылки различного назначения, детали машин, перерабатывающие пищевые продукты (например, шоколадные формы) и т.д.

В целом свойства поликарбоната соответствуют следующим величинам:

  • Плотность - 1,20 г/см 3
  • Водопоглощение – 0,2%
  • Усадка – 0,5÷0,7%
  • Ударная вязкость по Изоду с надрезом – 84÷90 кДж/м 2
  • Ударная вязкость по Шарпи с надрезом – 40÷60 кДж/м 2
  • Температура применения - от −100°C до +125°C
  • Температура плавления около 250°C
  • Температура возгорания около 610°C
  • Показатель преломления равняется 1,585 ± 0,001
  • Способность к пропусканию света - около 90% ± 1%

Из-за высокой ударопрочности поликарбоната лабораторные методы не позволяют произвести определение ударной вязкости по Шарпи , без надреза, поэтому в резльтатах испытаний обычно значится "нет разрыва" или "без разрушений". Тем не менее, сравнителный анализ ударной вязкости полученной по другим методам измерений и показателей для других пластиков позволяет оценить эту величину на уровне ~ 1 МДж/м 2 (1000 кДж/м 2)

Российская номенклатура марок поликарбоната

Обозначение поликарбонатов различных марок имеет вид

ПК-[метод переработки][модификаторы в составе]-[ПТР] ,

при этом:

  • ПК - поликарбонат
  • Рекомендованный метод переработки:
    • Л – переработка литьем под давлением
    • Э – переработка экструзией
  • Модификаторы в составе композиции:
    • Т – термостабилизатор
    • С – светостабилизатор
    • О – краситель
  • ПТР - максимальный показатель текучести расплава: 7 или 12 или 18 или 22

В Советском Союзе до начала 90х годов прошлого века выпускался поликарбонат "дифлон" , марки:

ПК-1 - высоковязкая марка, ПТР=1÷3,5, в дальнейшем заменен на ПК-ЛЭТ-7, в наст. вр. используются высоковязкие марки импортных материалов;

ПК-2 - средневязкая марка, ПТР=3,5÷7, в дальнейшем заменен на ПК-ЛТ-10, в наст. вр. используются средневязкие марки импортных материалов;

Поликарбонат в строительстве – прекрасная альтернатива стеклу. У него очень высокая светопроницаемость благодаря 90% прозрачности, а также он очень легкий. Кроме того, поликарбонат в несколько сотен раз крепче стекла – молоток и пули ему не страшны. Именно его предпочитают огородники в сооружении теплиц, тогда никакой град или ураган не способны ее испортить.

Кроме монтажа теплиц, материал поликарбонат используют для сооружения магазинных витрин, рекламных щитов, в остеклении зданий, балконов и лоджий, в устройстве офисных перегородок, в качестве ограждений на детских площадках или бассейнов и в других прозрачных конструкциях. Данный материал эстетичен и приятен, поэтому его также используют в качестве декора.

Подробнее о характеристиках и преимуществах поликарбоната

Поликарбонат – это прозрачный полимерный пластик, который хранится в виде гранул до самого момента переработки. В состав данного вещества входит: двухатомный фенол, вода, угольная кислота, растворители и красители. При высоких температурах не теряет своих свойств, способен к самовосстановлению, а потому и экологически безопасен.

Важно: не стоит вскрывать заводскую упаковку до момента использования поликарбонатных листов, чтобы не попал конденсат, а также нельзя срывать защитную пленку – может попасть пыль или насекомые, это негативно отразится на внешнем виде листа.

Производятся два вида поликарбоната – сотовый и монолит. По качеству они одинаковы. Отличие лишь в том, что структура сотового поликарбоната ячеистая (внутри он пустотелый, есть лишь перегородки между ячейками), а монолит – сплошной без пустых ячеек внутри.

Технические характеристики:

    Как уже говорилось, данный материал больше всего любят при монтаже теплиц – у него прекрасная теплоизоляция.

    Огнеустойчив и не токсичен, имеет свойства самозатухания.

    Нереально ударопрочный – используют в сооружении ограждений против вандализма.

    Устойчив к температурным перепадам. Не уязвим при сложных погодных условиях.

Важно: хоть материал не теряет своих свойств при воздействии высокой температуры, он может увеличиться в размере до 4мм – это нужно учитывать при монтаже и хранении.

    Благодаря тому, что материал очень гибок, из него удобно делать арки и другие конструкции, которым нужно придать оригинальную геометрическую форму. Для этого чаще используется сотовый лист.

    Не пропускает ультрафиолет. Сам материал под воздействием УФ разрушается, но производители учли этот нюанс и добавляют в его состав специальное защитное средство.

Чтобы не сомневаться в том какой тип поликарбоната выбрать – ячеистый или монолит, помните, что разница лишь в том, что ячеистый имеет меньший вес, чем монолит, а также у ячеистого немного выше шумоизоляция, благодаря пустотам в сотах.

Сам по себе поликарбонат очень легкий материал, с ним можно работать без использования специальной силовой техники. Еще одним важным преимуществом является то, что материал безопасен как в монтаже, так и в быту. Если стекло случайно ударить, оно разобьется, и может кого-то поранить – с поликарбонатом подобные случаи исключены вообще.

Описание монтажа теплицы из поликарбоната

Построить теплицу своими руками из поликарбоната намного легче, чем из стекла. Кроме того, пластичность материала позволяет придать теплице более интересную форму.

    Поликарбонат не хрупкий, в отличии от стекла.

    Легко режется ножницами по металлу (можно пилой или ножом).

    Гибкость – можно делать крышу в виде арки. Это поможет избежать стыкований, чего нельзя сказать о монтаже стеклянной теплицы.

Важно: несмотря на то, что поликарбонат достаточно гибкий, нужно соблюдать меру. Не стоит превышать радиус изгиба, указанный на упаковке, это приведет к нарушению спецпокрытия от ультрафиолета.

Фундамент и каркас теплицы

Первым делом заливается фундамент теплицы. Если теплица будет располагаться на мягком грунте, то следует сделать обвязку, а затем залить бетонный фундамент. Можно использовать кирпич или камень. Такой фундамент прослужит много лет.

Каркас для теплицы может быть деревянный, профилированный или металлический. Лучше использовать металлический, потому что профилированный не очень прочный и может прогнуться под давлением, а деревянный нужно красить - он ссыхается. Идеальным вариантом будет металлический уголок или квадратная арматура.

Обшивка каркаса теплицы поликарбонатными листами

    Первым делом нужно содрать заводскую пленку с листов. Лучше это сделать перед обшивкой, потом будет очень неудобно, и придется повозиться.

    Крепятся листы на внешнюю сторону каркаса, внахлест, используя термошайбы и саморезы.

    Постарайтесь, чтобы сторона с защитным покрытием от УФ была снаружи.

    Сгибать сотовый поликарбонат можно лишь по направлению ребер жесткости.

    Не нужно сильно затягивать крепежи – лист должен крепко держаться, но иметь возможность свободно двигаться, чтобы было куда расширяться при нагревании.

Нет ничего сложного в том, чтобы сделать монтаж теплицы самому. Можно, конечно, приобрести и уже готовый каркас, обшитый поликарбонатом, который потом лишь устанавливается на фундамент, но это обойдется несколько дороже. Кроме того, можно не угадать с размерами, что повлечет лишние траты, хотя решать вам – оба варианта имеют свои плюсы и минусы. В первом варианте вы тратите свое время и силы, но экономите деньги, во втором – наоборот.

Срок службы поликарбоната

Если за поликарбонатом правильно ухаживать и соблюсти все меры предосторожности при монтаже, то он способен прослужить на несколько десятков лет дольше, чем указано производителем.

Уход за поликарбонатом

На примере с теплицей, по приходу весны, поликарбонат нужно очистить от грязи, которая накапливается за зиму. Из-за грязи материал теряет прозрачность, а от этого сильнее нагревается, что ведет к деформации листа. Следите за чистотой сооружения.

Поликарбонат легко чистить. Для этого можно использовать любое средство для мытья посуды, если у вас нет специального, и хлопковую ткань.

Важно: моющее средство не должно содержать аммиак, он разрушает материал, а для жирных пятен используйте этиловый спирт! Не трите его щеткой или скребком, только хлопковой тканью! Иначе повредите покрытие, которое защищает от ультрафиолета.

В завершение несколько слов о расцветке поликарбоната

Поликарбонат имеет богатую цветовую гамму, особенно сотовый. У литого не столь велико разнообразие цветов, потому что его используют реже, чем ячеистый, но все равно выбор есть.

Основное назначение цветного поликарбоната, это придание красоты и оригинальности внешнему виду постройки. Но некоторые специалисты утверждают, что для сооружения теплицы цвет имеет значение не только в эстетическом плане. Считается, что зеленый цвет не подходит для теплиц, потому как угнетает рост растений, красный или оранжевый, наоборот, способствует. В любом случае, если вы решите использовать данный материал в строительстве, то вам будет где проявить фантазию.

Уход за поликарбонатом

На примере с теплицей, по приходу весны, поликарбонат нужно очистить от грязи, которая накапливается за зиму. Из-за грязи материал теряет прозрачность, а от этого сильнее нагревается, что ведет к деформации листа. Следите за чистотой сооружения.

Поликарбонат легко чистить. Для этого можно использовать любое средство для мытья посуды, если у вас нет специального, и хлопковую ткань.

u Важно : моющее средство не должно содержать аммиак, он разрушает материал , а для жирных пятен используйте этиловый спирт! Не трите его щеткой или скребком, только хлопковой тканью! Иначе повредите покрытие, которое защищает от ультрафиолета.

В завершение несколько слов о расцветке поликарбоната

Поликарбонат имеет богатую цветовую гамму, особенно сотовый. У литого не столь велико разнообразие цветов, потому что его используют реже, чем ячеистый, но все равно выбор есть.

Normal 0 false false false RU X-NONE X-NONE

Как и всякий новый строительный материал, появляющийся на рынке, поликарбонат вызвал к себе повышенное внимание. На протяжении периода его эксплуатации он завоевал огромную популярность в качестве кровельного и отделочного материала широкого спектра применения. Но, все новое вызывает не только интерес, но и определенные опасения. Так как поликарбонат при высоких эстетичных качествах имеет довольно небольшую стоимость, у потребителей возникает вполне справедливый вопрос: из чего состоит и не вреден ли поликарбонат для здоровья. Чтобы ответить на этот вопрос и развеять все сомнения, необходимо остановиться подробно на свойствах этого материала.

Свойства поликарбоната

Чтобы узнать, вреден ли поликарбонат, нужно рассмотреть его состав, физические и химические свойства, влияние на человека и природу в различных условиях.

Состав поликарбоната

Чтобы знать о возможном вреде того или иного вещества нужно рассмотреть его химический состав. Поликарбонат представляет собой вязкую полимерную пластмассу. Основной его составляющей частью является углерод - элемент совершенно безопасный, как для человека, так и для окружающей природы. Получают поликарбонат путем органического синтеза угольной кислоты. В нем отсутствуют тяжелые металлы и токсичные элементы.

Данный вид пластмассы получают следующими способами:

  • экструзией;
  • литьем под высоким давлением;
  • формовкой из раствора;
  • созданием волокон из раствора.

Полученные изделия отличаются химической инертностью, практически не вступая в реакции со всеми активными веществами.

Из полимера данного вида изготавливаются такие группы изделий:

  1. Прозрачный строительный материал. В эту группу входят монолитные и сотовые листы различной толщины, длины и ширины. Кроме этого могут изготавливаться прозрачные блоки заданной конфигурации.
  2. Посуда и разнообразные сосуды. Благодаря химической пассивности, столовая посуда и медицинские емкости пользуются большой популярностью. Они имеют низкую теплопроводность и высокую ударную прочность. Могут быть подвергнуты нагреванию до +120 ºС без потери качественных характеристик.
  3. Конструкционный материал для изготовления изделий, к которым предъявляются повышенные требования по прочности и температурному режиму. Это могут быть плафоны и экраны для ламп, мотошлемы, защитные очки или корпуса для фонарей.
  4. Пленка. Полученная с помощью полимеризации пленка обладает большой прочностью и служит отличной защитой для различных поверхностей.

Под воздействием высокой температуры поликарбонат не горит. Изделия из него только плавятся и закипают. При кипении выделяется пар, который представляет собой обычный углекислый газ - химическое соединение, присущее процессу горения древесины. Этот газ, хотя и представляет определенную опасность для человека, не является ядовитым.

Физические свойства материала

Продолжая рассмотрение вопроса о том, вреден ли поликарбонат для здоровья, необходимо рассмотреть его физические качества.

Итак, изделия из поликарбоната обладают такими свойствами:

  1. Высокая прочность. При малом удельном весе, изделия из этого пластика намного прочнее стекла и других прозрачных пластмасс. При сильном ударе они не разлетаются на множество острых осколков, которые могут поранить, а только трескаются.
  2. Низкий удельный вес. Обладая определенным объемом при незначительном весе, изделия из полимера при падении не травмируют человека. Для крепления листового материала нет необходимости строить тяжелый, массивный каркас.
  3. Низкая теплопроводность. Воздух, находящийся в каналах сотового поликарбоната, является отличным теплоизолятором. Пластик такого вида хорошо защищает от жары и холода людей в помещениях и растения в теплицах и оранжереях.
  4. Рассеивание света. Солнечный свет, проходя через пластик, рассеивается. В результате освещенность улучшается, становясь более мягким. Поликарбонат выпускается с различной степенью прозрачности, что является хорошей защитой от солнца.
  5. Огнеупорные качества. Являясь негорючим материалом, поликарбонат может определенное время служить преградой для огня во время пожара. При плавлении образуются отверстия в его поверхности, через которые в помещение поступает чистый воздух, необходимый для дыхания.
  6. Удобство и легкость при монтаже. Листы полимера легкие и гибкие. Их поднятие и установка не требуют значительных физических усилий, что предотвращает перенапряжение и травматизм.
  7. Водонепроницаемость и гидрофобные качества. Вода и снег не задерживаются на поверхности, быстро скатываясь вниз. Пластик не подвержен гниению и плесневению.
  8. Красота материала. Поликарбонату можно придать любой цвет и оттенок. Он может иметь любую степень прозрачности. Конструкции с его применением очень броские и нарядные.
  9. Нет необходимости в сложной и дорогостоящей утилизации, так как материал абсолютно экологически безопасен.

Таким образом, вредность поликарбоната является лишь гипотезой, которая не имеет под собой никаких серьезных оснований. Более того, этот материал приносит определенную пользу, являясь сырьем для изготовления различных изделий.

Универсальность материала

Уникальные физические и химические свойства обеспечили поликарбонату большой успех во многих отраслях промышленности.

Так, этот материал применяется для изготовления таких объектов и предметов:

  1. Навесы. Они сооружаются на самыми различными объектами. Это может быть автостоянка, мангал, детская площадка или стол со скамьями.
  2. Козырьки. Данные сооружения устанавливаются над входными дверями и калитками, защищая их от осадков.
  3. Заборы и въездные ворота. Листы поликарбоната не создают глухой преграды, размывая изображения за ними.
  4. Крыши для торговых, спортивных и сельскохозяйственных сооружений, портов и вокзалов.
  5. Теплицы и парники личного и промышленного назначения.
  6. Перегородки и ограждения.
  7. Остекления стен и крыш зданий и сооружений.
  8. Декоративная противопульная защита.
  9. Столовые приборов и посуда, различные медицинские емкости. Их без риска можно использовать для разогрева в микроволновой печи. Посуда из этого пластика прочная и не бьется при падении на пол.
  10. Элементы для сувениров и украшений.
  11. Изделия, к которым предъявляются повышенные требования по прочности и теплоустойчивости.

Данный перечень с трудом ассоциируется с вредом, но при неумелом пользовании, поликарбонат может доставить определенный вред.

Вред поликарбоната

Сразу хочется остановиться на том, что если этот уникальный материал и способен нанести какой-либо вред, то только не здоровью человека или животных.

На заметку: Дело в том, что некоторые сорта поликарбоната могут быть покрыты специальной пленкой для защиты от ультрафиолета.

Эта пленка хорошо защищает людей от излучения, а ткани и обои от выцветания. Для растений эта пленка губительна, так как без ультрафиолета прекратится процесс фотосинтеза. Это нужно учитывать при планировании остекления мансард, парников и оранжерей.

Неправильный подбор материала может навредить тепличным растениям. Если оборудовать теплицу слишком тонким пластиком, то он не будет задерживать тепло. Нагреваясь на солнце, он может сильно поднять температуру внутри теплицы. Многие растения могут этого не выдержать.

Кроме этого, теплицы из поликарбоната на зиму не демонтируются, так как это процесс долгий и сложный. В результате, земля внутри теплицы пересыхает и на ее увлажнение тратится много сил и времени.

Таким образом, на вопрос о том, вреден ли поликарбонат для здоровья человека, можно ответить однозначно - нет. Это совершенно безопасный материал, которым можно абсолютно спокойно пользоваться, как на улице, так и внутри помещений.

Видео про применение поликарбоната на даче

Автор Химическая энциклопедия г.р. И.Л.Кнунянц

ПОЛИКАРБОНАТЫ , сложные полиэфиры угольной кислоты и дигидроксисоединений общей формулы [-ORO-C(O)-] n , где R-ароматические или алифатич. остатоколо Наибольшее пром. значение имеют ароматические ПОЛИКАРБОНАТЫ (макролон, лексан, юпи-лон, пенлайт, синвет, поликарбонат): гомополимер формулы I на основе 2,2-бис-(4-гидроксифенил)пропана (бисфенола А) и смешанные ПОЛИКАРБОНАТЫ на основе бисфенола А и его замещенных-3,3»,5,5»-тетрабром- или 3,3»,5,5»,-тетраметилбисфено-лов А (формула II; R = Br или CH 3 соответственно).



Свойства. ПОЛИКАРБОНАТЫ на основе бисфенола А (гомополикарбо-нат) - аморфный бесцв. полимер; молекулярная масса (20-120) 10 3 ; обладает хорошими оптический свойствами. Светопропускание пластин толщиной 3 мм составляет 88%. Температура начала деструкции 310-320 0 C. растворим в метиленхлориде, 1,1,2,2-тетрахлорэтане, хлороформе, 1,1,2-трихлорэтане, пиридине, ДМФА, цикло-гексаноне, не растворим в алифатич. и циклоалифатич. углеводородах, спиртах, ацетоне, простых эфирах.

Физ.-механические свойства ПОЛИКАРБОНАТЫ зависят от величины молекулярной массы. ПОЛИКАРБОНАТЫ, молекулярная масса которых менее 20 тысяч,-хрупкие полимеры с низкими прочностными свойствами, ПОЛИКАРБОНАТЫ, молекулярная масса которых 25 тысяч, обладают высокой механические прочностью и эластичностью. Для ПОЛИКАРБОНАТЫ характерны высокое разрушающее напряжение при изгибе и прочность при действии ударных нагрузок (образцы ПОЛИКАРБОНАТЫ без надреза не разрушаются), высокая стабильность размеров. При действии растягивающего напряжения 220 кг/см 2 в течение года не обнаружено пластич. деформации образцов ПОЛИКАРБОНАТЫ По диэлектрическая свойствам ПОЛИКАРБОНАТЫ относят к среднечастотным диэлектрикам; диэлектрическая проницаемость практически не зависит от частоты тока. Ниже приведены некоторые свойства ПОЛИКАРБОНАТЫ на основе бисфенола А:

Плотн. (при 25 0 C), г/см 3

T. стекл., 0 C

T. размягч., 0 C

Ударная вязкость по Шарпи (с надрезом), кДж/м 2

КДж/(кг К)

Теплопроводность, Вт/ (м K)

Коэф. теплового линейного расширения, 0 C -1

(5-6) 10 -5

Теплостойкость по Вика, 0 C

e (при 10-10 8 Гц)

Электрич. прочность (образец толщиной 1-2 мм) кВ/м

при 1 МГц

при 50 Га

0,0007-0,0009

Равновесное влагосодержание (20 0 C, 50%-ная относит. влажность воздуха), % по массе

Макс. поглощение воды при 25 0 C, % по массе

ПОЛИКАРБОНАТЫ характеризуются невысокой горючестью. Кислородный индекс гомополикарбоната составляет 24-26%. Полимер биологически инертен. Изделия из него можно эксплуатировать в интервале температур от - 100 до 135 0 C.

Для снижения горючести и получения материала с величиной кислородного индекса 36-38% синтезируют смешанные ПОЛИКАРБОНАТЫ (сополимеры) на основе смеси бисфенола А и 3,3»,5,5»-тетрабромбисфенола А; при содержании последнего в макромолекулах до 15% по массе прочностные и оптический свойства гомополимера не изменяются. Менее горючие сополимеры, имеющие также более низкое дымовыделение при горении, чем у гомополикарбоната, получены из смеси бисфенола А и 2,2-бис-(4-гидроксифенил)-1.1 -дихлорэтилена.

Оптически прозрачные ПОЛИКАРБОНАТЫ, обладающие пониж. горючестью, получены при введений в гомополикарбонат (в кол-ве менее 1%) солей щелочных или щел.-зем. металлов ароматические или алифатич. сульфокислот. Например, при содержании в гомополикарбонате 0,1-0,25% По массе дикалиевой соли дифенилсульфон-3,3»-дисульфокислоты кислородный индекс возрастает до 38-40%.

Температуру стеклования, устойчивость к гидролизу и атмосферо-стойкость ПОЛИКАРБОНАТЫ на основе бисфенола А повышают введением в его макромолекулы эфирных фрагментов; последние образуются при взаимодействии бисфенола А с дикарбоновыми кислотами, например изо- или терефталевой, с их смесями, на стадии синтеза полимера. Полученные таким образом полиэфир-карбонаты имеют т. стекл. до 182 0 C и такие же высокие

оптический свойства и механические прочность, как у гомополикарбоната. Устойчивые к гидролизу ПОЛИКАРБОНАТЫ получают на основе бисфенола А и 3,3»,5,5»-тетраметилбисфенола А.

Прочностные свойства гомополикарбоната возрастают при наполнении стекловолокном (30% по массе): 100 МПа, 160 МПа, модуль упругости при растяжении 8000 МПа.

Получение. В промышленности ПОЛИКАРБОНАТЫ получают тремя методами. 1) Переэтерификация дифенилкарбоната бисфенолом А в вакууме в присутствии оснований (например, метилата Na) при ступенчатом повышении температуры от 150 до 300 0 C и постоянном удалении из зоны реакции выделяющегося фенола:


Процесс проводят в расплаве (см. Поликонденсация в расплаве)по периодической схеме. Получаемый вязкий расплав удаляют из реактора, охлаждают и гранулируют.

Достоинство метода - отсутствие растворителя; основные недостатки - невысокое качество ПОЛИКАРБОНАТЫ вследствие наличия в нем остатков катализатора и продуктов деструкции бисфенола А, а также невозможность получения ПОЛИКАРБОНАТЫ с молекулярная масса более 50000.

2) F осгенирование бисфенола А в растворе в присутствии пиридина при температуре 25 0 C (см. Поликонденсация в растворе). Пиридин, служащий одновременно катализатором и акцептором выделяющегося в реакции HCl, берут в большом избытке (не менее 2 молей на 1 моль фосгена). Растворителями служат безводные хлорорганическое соединения (обычно метиленхло-рид), регуляторами молекулярной массы - одноатомные фенолы.

Из полученного реакционное раствора удаляют гидрохлорид пиридина, оставшийся вязкий раствор ПОЛИКАРБОНАТЫ отмывают от остатков пиридина соляной кислотой. Выделяют ПОЛИКАРБОНАТЫ из раствора с помощью осадителя (например, ацетона) в виде тонкодисперсного белого осадка, который отфильтровывают, а затем сушат, экструди-руют и гранулируют. Достоинство метода - низкая температура процесса, протекающего в гомог. жидкой фазе; недостатки-использование дорогостоящего пиридина и невозможность удаления из ПОЛИКАРБОНАТЫ примесей бисфенола А.

3) Межфазная поликонденсация бисфенола А с фосгеном в среде водной щелочи и органическое растворителя, например метиленхлорида или смеси хлорсодержащих растворителей (см. Межфазная поликонденсация):


Условно процесс можно разделить на две стадии, первая -фосгенирование динатриевой соли бисфенола А с образованием олигомеров, содержащих реакционноспособные хлор-формиатные и гидроксильные концевые группы, вторая -поликонденсация олигомеров (катализатор-триэтиламин или четвертичные аммониевые основания) с образованием полимера. В реактор, снабженный перемешивающим устройством, загружают водный раствор смеси динатриевой соли бисфенола А и фенола, метиленхлорид и водный раствор NaOH; при непрерывном перемешивании и охлаждении (оптим. температура 20-25 0 C) вводят газообразный фосген. После достижения полной конверсии бисфенола А с образованием олигокарбо-ната, в котором молярное соотношение концевых групп COCl и ОН должно быть больше 1 (иначе поликонденсация не пойдет), подачу фосгена прекращают. В реактор добавляют триэтиламин и водный раствор NaOH и при перемешивании осуществляют поликонденсацию олигокарбоната до исчезновения хлорформиатных групп. Полученную реакционное массу разделяют на две фазы: водный раствор солей, отправляемый на утилизацию, и раствор ПОЛИКАРБОНАТЫ в метиленхлориде. Последний отмывают от органическое и неорганическое примесей (последовательно 1-2%-ным водным раствором NaOH, 1-2%-ным водным раствором H 3 PO 4 и водой), концентрируют, удаляя метиленхлорид, и выделяют ПОЛИКАРБОНАТЫ осаждением или посредством перевода из раствора в расплав с помощью высококипящего растворителя, например хлорбензола.

Достоинства метода - низкая температура реакции, применение одного органическое растворителя, возможность получения ПОЛИКАРБОНАТЫ высокой молекулярной массы; недостатки - большой расход воды для промывки полимера и, следовательно, большой объем сточных вод, применение сложных смесителей.

Метод межфазной поликонденсации получил наиболее широкое распространение в промышленности.

Переработка и применение. П. перерабатывают всеми известными для термопластов способами, однако гл. обр. - экструзией и литьем под давлением (см. Полимерных материалов переработка)при 230-310 0 C. Выбор температуры переработки определяется вязкостью материала, конструкцией изделия и выбранным циклом литья. Давление при литье 100-140 МПа, литьевую форму подогревают до 90-120 0 C. Для предотвращения деструкции при температурах переработки ПОЛИКАРБОНАТЫ предварительно сушат в вакууме при 115 5 0 C до содержания влаги не более 0,02%.

ПОЛИКАРБОНАТЫ широко применяют как конструкц. материалы в автомобилестроении, электронной и электротехн. промышленности, в бытовой и мед. технике, приборо- и самолетостроении, пром. и гражданском стр-ве. Из ПОЛИКАРБОНАТЫ изготовляют прецизионные детали (шестерни, втулки и др.), осветит. арматуру, фары автомобилей, защитные очки, оптический линзы, защитные шлемы и каски, кухонную утварь и т. п. В мед. технике из ПОЛИКАРБОНАТЫ формуют чашки Петри, фильтры для крови, различные хирургич. инструменты, глазные линзы. Листы из ПОЛИКАРБОНАТЫ применяют для остекления зданий и спортивных сооружении, теплиц, для производства высокопрочных многослойных стекол - триплек-сов.

Мировое производство ПОЛИКАРБОНАТЫ в 1980 составило 300 тысяч т/год, производство в СССР-3,5 тысяч т/год (1986).

Литература: Шнелл Г., Химия и физика поликарбонатов, пер. с англ., M., 1967; Смирнова О. В., Ерофеева С. Б., Поликарбонаты, M., 1975; Sharma C. P. [а. о.], "Polymer Plastics", 1984, v. 23, № 2, p. 119 23; Factor A., Or Undo Ch. M., "J. Polymer Sci., Polymer Chem. Ed.", 1980, v. 18, № 2, p. 579-92; Rathmann D., "Kunststoffe", 1987, Bd 77, № 10, S. 1027 31. В. В. Америк.

Химическая энциклопедия. Том 3 >>

Сотовый, или иначе - структурированный или ячеистый поликарбонат получил свое название из-за особого внутреннего строения: его конструкция может быть двух, трех или четырехслойной, заполненной определенным количеством ребер жесткости, образующих треугольники, крестообразные соединения или квадратные. Рассматривая лист в разрезе можно заметить его сходство с пчелиными сотами. Благодаря такой структуре материал имеет отличные прочностные характеристики и высокий коэффициент гибкости, а воздух, заключенный в сотах обеспечивает его теплосберегающие свойства.

Сотовый поликарбонат - как его изготавливают

Для изготовления сотового материала используют поликарбонат - гранулированную бесцветную пластическую массу, отличающуюся легкостью, морозостойкостью, диэлектрическими свойствами, долговечностью. Уникальная структура макромолекул поликарбоната - вот главная причина уникальных свойств, ему присущих.

Термопластичность материала позволяет ему восстанавливаться в процессе затвердевания после каждого процесса расплавления, т.е. материал можно перерабатывать многократно, что очень важно с точки зрения экологичности.

Производство материала осуществляется путем экструзии, т.е. продавливания растопленного жидкого вязкого вещества сквозь формирующий инструмент. В результате получается полотно, имеющие заданную форму поперечного сечения.

Свойства и преимущества сотового материала

Сразу можно заметить, что поликарбонат выгодно отличается от любого прозрачного строительного материала - ни один из них не обладает аналогичными положительными качествами в полном объеме.

Сотовый поликарбонат отличается:

  1. Низким коэффициентом теплопроводности, обеспечивающим более высокие чем у стекла теплосберегающие качества материала, что позволяет почти на половину снизить расход энергии на обогрев или охлаждение помещений.
  2. Многослойная структура материала обеспечивает хорошее звукопоглощение, и, соответственно хорошие шумоизоляционные качества.
  3. Материал хорошо рассеивает световые лучи, его прозрачность равняется 86%, при прохождении света не отбрасывает тень.
  4. Эксплуатация материала может производиться при температурах от -40 С до +120 С, т.е. использовать его можно практически в любой природной зоне, качественные характеристики материала в очень незначительной степени зависят от изменений, происходящих в окружающей среде. Он не восприимчив к воздействию химических реагентов.
  5. Поликарбонат имеет незначительный вес, примерно в 16 раз меньший, чем оконное стекло и в 6 раз меньше чем акриловый лист такой-же толщины, применение материала позволяет получить экономию за счет проектирования менее мощного фундамента и снижения затрат на сооружение опорных конструкций. Монтажные работы можно выполнять без использования специальной строительной техники.
  6. Материал имеет высокую вязкость, обеспечивающую его ударопрочность (в 200 раз большую, чем у листового стекла), он устойчив к нагрузкам на изгиб и разрыв. В случае повреждения при очень сильном ударе острые осколки не образуются. Поликарбонатное покрытие может выдерживать нагрузки, оказываемые накопившимся снегом, не рвется от порывов ветра, как полиэтиленовая пленка, что делает его идеальным вариантом для покрытия теплиц. Хорошая гибкость материала позволяет использовать его при монтаже конструкций крыш со сложной геометрией, в том числе арочных и сводчатых.
  7. Поликарбонат отличается несклонностью к воспламенению, он не горит, но под воздействие открытого огня плавится образуя паутинообразное волокно, токсические вещества при этом не выделяются.
  8. Постоянство технических характеристик материала обеспечивается за счет нанесенного на лицевую сторону листов защитного слоя, задерживающего ультрафиолетовую часть солнечного спектра.

Сотовый поликарбонат - размеры листа и область применения в зависимости от толщины

Выпускается сотовый поликарбонат в широкой цветовой гамме, его базовые цвета:

  • теплые - красный, коричневый, бронзовый, оранжевый, желтый, молочный,
  • холодные - белый, синий, бирюзовый, зеленый,
  • также можно встретить прозрачные панели.

Если говорить о размерах листов, то следует оговорить, что выпускается поликарбонат в нескольких вариантах:

  • монолитном, толщиной от 2 до 12 мм, со стандартными габаритами листа 2,05х3,05 м,
  • ячеистом, толщиной от 4 до 32 мм, с габаритами листа 2,1х6 м или 2,1 12 м,
  • профилированном, толщиной 1,2 мм, размером листа 1,26х2,24 м, высотой профиля до 5 см.


В зависимости от толщины листов, сотовый поликарбонат применение может иметь разное, рекомендуется использовать при сооружении:

  • 4-х мм - навесов и парников, витрин, выставочных стендов,
  • 6-ти мм - навесов, теплиц, козырьков,
  • 8-ми мм - теплиц, крыш, навесов, перегородок,
  • 10-ти мм - сплошного остекления горизонтальных и вертикальных поверхностей, изготовления шумозащитных барьеров, навесов,
  • 16-ти мм - крыш над большими по площади сооружениями,
  • 32-х мм - для кровель с повышенными требованиями к нагрузкам.

Исходя из такого широкого ассортимента продукции перед началом строительства потребуется изучить свойства и решить какой поликарбонат рационально применить в каждом конкретном сооружении.

Основные принципы работы с поликарбонатом


Поскольку листы материала имеют довольно большие габариты во время строительства потребуется придавать им нужные размеры, т.е. разрезать. Особых проблем с резкой поликарбоната не возникает, если толщина листа составляет от 0,4 до 10 мм, то можно воспользоваться строительным выдвижным острым ножом. Защитную пленку с поверхности снимать не рекомендуется - она обеспечит защиту от царапин.

Разрез следует делать аккуратно, обеспечивая точную, прямую линию. Для нарезки более толстого материала следует воспользоваться пилой с упором, работающей в высокоскоростном режиме. Зубья такой пилы должны быть изготовлены из армированных сплавов, мелкие, неразведенные. Также можно воспользоваться электролобзиком.

При работе лист следует поддерживать, чтобы исключить его вибрацию. Стружку, которая будет попадать внутрь листа во время распила требуется удалить по окончанию работы.

Чтобы выполнить крепление поликарбоната потребуется высверлить отверстия в листах. Для этого используются острые сверла из стали. Размечать место для сверления требуется так, чтобы оно было расположено между внутренними ребрами жесткости. Расстояние от отверстия до кромки должно составлять около 10 мм.

Выполнить загиб сотового поликарбоната можно исключительно по линиям каналов, по длине листа. Радиус загиба может превышать толщину листа в 175 раз.

Поскольку внутри листов имеются пустоты, то особое внимание следует уделить обработке их торцовой части. Если листы будут монтироваться в вертикальном или наклонном положении, то закрытие торцов в верхней части должно выполняться самоклеящейся алюминиевой полосой, а в нижней - перфорированной, которая сможет защитить материал от проникновения внутрь грязи, но обеспечивающая возможность стекания конденсата.

При использовании поликарбоната в строительстве арочной конструкции потребуется закрытие его торцов перфорированной пленкой. Материалы для герметизации следует подбирать соответствующего расцветкам панелей оттенка.

  • Наиболее качественными считаются алюминиевые герметики, они долговечны и просты в использовании.
  • При использовании неперфорированного герметика в нем следует просверлить отверстия наименьшего диаметра - для выхода конденсата и паров.
  • Оставлять торцы открытыми не рекомендуется - это будет способствовать снижению прозрачности панелей и уменьшит срок их эксплуатации.
  • Торцы не рекомендуется заклеивать обычным скотчем.
  • При монтаже листов следует ориентировать их таким образом, чтобы обеспечить возможность беспрепятственного вывода конденсата.
  • Планировать монтаж панелей следует таким образом, чтобы при вертикальной установке ребра жесткости располагались вертикально, при сооружении скатной поверхности - продольно, для арочной - дугообразно.
  • Для выполнения наружных работ следует использовать материал со слоем, защищающим его от ультрафиолетового излучения.

Крепление поликарбоната

Несущие продольные опоры для каркаса монтируются с шагом:

  • для 6-16 мм листов - 700 мм,
  • для 25-ти м листов - 1050 мм.

При расчете расстояния между поперечными опорами учитываются:

  • ожидаемые ветровые или снеговые нагрузки,
  • угол наклона конструкции.

Расстояние может равняться от 0,5 до 2 м.

Для крепления поликарбоната используют саморезные болты или термошайбы, одна из которых представляет собой пластиковую пластинку с высоком стержнем, другая -уплотнитель, также в комплекте имеется крышечка защелкивания. Термошайба обеспечивает прочное и герметичное соединение без мостиков холода и сжатия панелей. Что избежать проблем, вызываемых температурным расширением отверстия должны иметь диаметр больший, чем сечение ножки шайбы на пару миллиметров.

Гвозди или заклепки для крепления панелей использовать нельзя! Перетягивать саморезные болты при выполнении монтажа не рекомендуется. Неправильное крепление поликарбоната саморезами может привести к сокращению сроков его эксплуатации.

Если производится монтаж неразъемных панелей, то вставлять их следует в фальц профиля толщины такой-же какую имеют эти панели.

При помощи саморезных болтов они крепятся к продольной опоре. Перед началом работы рекомендуется выдерживать листы ячеистого поликарбоната в сухом теплом помещении, и только потом заклеить их торцы самоклеящейся лентой - в таком случае внутри ячеистого материала конденсат образовываться не будет. Чтобы предупредить возможность повреждения поверхности при защелкивании профиля используют деревянную киянку.

При монтаже следует учитывать, что поликарбонат не относят к статичным материалам, его размеры, пусть в незначительной степени (до 0,065 мм/м при изменении температуры на 1 градус), но изменяются от перепадов температур. Поэтому при монтаже следует оставлять соответствующие зазоры, но не следует забывать о необходимости использования специальных креплений, которые предупредят выскальзывание панелей при снижении температуры. Достаточно чтобы запас свободного хода составлял 2 мм на каждый погонный метр. Вышеуказанным требованиям должны соответствовать диаметры отверстий заготавливаемых для крепежа.

Эксплуатация поверхностей из поликарбоната и уход за ними

  1. До начала монтажа панели следует хранить в упакованном виде, транспортируют их в горизонтальном положении.
  2. Не рекомендовано хранение панелей под прямыми лучами солнца или под дождем.
  3. Нельзя ходить по поликарбонатным листам.
  4. Очистку панелей производят мягкой ветошью смоченной раствором мыла или средства для мытья посуды.
  5. Нельзя использовать моющие средства в которых содержится аммиак, кислоты, хлор, растворители, соли.
  6. Для снятия загрязнений нельзя использовать острые предметы - они могут поцарапать ультрафиолетовый защитный слой.
  7. Установка листов производится таким образом чтобы сторона, на которую нанесена защитная пленка, была наружу. На упаковке следует найти обозначение уф-защиты.