Ремонт Дизайн Мебель

Электрическая искра. Открытый огонь, раскаленные продукты горения и нагретые ими поверхности Опасные тепловые проявления механической энергии

В производственных условиях пожароопасное повышение температуры тел в результате превращения механической энергии в тепловую наблюдается при ударах твердых тел (с образованием или без образования искр); при поверхностном трении тел во время их взаимного перемещения; при механической обработке твердых материалов режущими инструментами, а также при сжатии газов и прессовании пластмасс. Степень разогрева тел и возможность появления при этом источников зажигания зависит от условий пе­рехода механической энергии в тепловую.

Рис- 5-9. Турбинно-вихревой искрогаситель: / - корпус; 2 - неподвижная турбина; 3 - траектория движения твердых частиц

Рис. 5.10. Зависимость температуры стальной искры от усилия и соударяющегося материала (по данным МИХМ): 1 - с абразивным диском; 2 - с металлическим диском. Линейная скорость соударения 5,2 м/с

Искры, образующиеся при ударах твердых тел. При достаточно» сильном соударении некоторых твердых тел высекаются искры (искры удара и трения). Искра в этом случае представляет собой раскаленную до свечения частицу металла или камня. Размеры искр удара и трения зависят от свойств материалов и энергетических характеристик удара, но обычно не превышают 0,1...0,5 мм. Температура искры, кроме того, зависит от процесса взаимодействия (химического и теплового) частицы металла с окружающей средой. Так, при ударе и истирании металлов в среде, не содержащей кислорода или другого окислителя, видимых искр не образуется. Дополнительный разогрев металлических искр удара при полете в окружающей среде происходит обычно в результате окисления их кислородом воздуха. Температура искр нелегированной малоуглеродистой стали может достигать температуры плавления металла (около 1550° С). Она будет возрастать с увеличением в стали содержания углерода, уменьшаться с увеличением легирующих добавок. Зависимость температуры искры от материала соударяющихся тел и прилагаемой удельной нагрузки показана на рис. 5.10. Согласно графикам, температура искры возрастает линейно с увеличением нагрузки, и более высокую температуру имеют искры, образующиеся при ударе стали о корунд, чем при ударе стали о сталь.

В производственных условиях от искр удара воспламеняются ацетилен, этилен, водород, окись углерода, сероуглерод. Искры удара (в определенных условиях) способны воспламенить метано-воздушные смеси. Поджигающая способность искр удара пропорциональна содержанию кислорода в смеси, которую эти искры могут поджечь. Это и понятно: чем больше в смеси кислорода, тем интенсивнее искра горит, тем выше горючесть смеси.

Воспламеняющая способность искр удара устанавливается экспериментально - в зависимости от энергии удара.

Летящая искра непосредственно не воспламеняет пылевоздушные смеси, но, попав на осевшую пыль или на волокнистые материалы, вызывает появление очагов тления. Этим, видимо, объясняется большое количество вспышек и загораний от механических искр в машинах, где имеются волокнистые материалы или отложения мелкой горючей пыли. Так, в размольных цехах мельниц и крупозаводов, в сортировочно-разрыхлительных и угарных цехах текстильных фабрик, а также на хлопкоочистительных заводах более 50% всех загораний и пожаров возникает от искр, высекаемых при ударах твердых тел.

Образуются искры при ударах алюминиевых тел о стальную окисленную поверхность. В этом случае между разогретой алюминиевой частицей и окислами железа происходит химическое взаимодействие с выделением значительного количества тепла:

2А1 + Fe 2 O 3 = А1 2 О 3 + 2Fe + Q.

За счет тепла этой реакции увеличиваются теплосодержание и температура искры.

Искры, образующиеся при работе ударными инструментами (молотками, зубилами, ломами и т. п.), часто вызывают пожаро-взрывоопасные ситуации. Известны случаи вспышек и взрывов в насосных и компрессорных станциях, а также в производственных помещениях при падении инструмента, ударах ключей в момент подтягивания гаек. Поэтому при производстве работ в местах, где возможно образование взрывоопасной смеси паров или газов с воздухом, не следует использовать ударные инструменты из искрообразующих материалов. Искробезопасными считают инструменты, выполненные из бронзы, фосфористой бронзы, латуни, бериллия, алюминиего сплава АКМ-5-2, дюралей с ограниченным (до 1,2... 1,8%) содержанием,магния..(сплав Д-16 и др.) и даже инструменты из высоколегированных сталей.. Использование омедненного инст­румента не достигает цели, ибо мягкий слой меди быстро истирается. При пользовании стальными инструментами следует оберегать их от падения и по возможности заменять ударные операции) безударными (например, рубку металла зубилом заменить распиловкой и т. п.), а для рассеивания горючих паров или газов у мест производства работ применять передвижные вентиляционные агрегаты.

Искры, образующиеся при попадании в машины металла или камней. В аппараты с мешалками для растворения или химической обработки твердых веществ в растворителях (например, целлулоидной массы в спирте, ацетилцеллюлозы в ацетоне, каучука в бензине, нитроклетчатки в спирто-эфирной смеси и т. п.), в машины ударно-центробежного действия для измельчения, разрыхления и смешивания твердых горючих веществ (молотковые и ударно-дисковые мельницы, дробилки кормов, хлопкоочистительные и трепальные машины и т. п.), в аппараты-смесители для перемешивания и составления порошковых композиций, в аппараты центробежного -действия для перемещения газов и паров (вентиляторы, газодувки, центробежные компрессоры) могут попасть вместе с обрабатываемыми продуктами куски металла или камни, в результате чего образуются искры. Поэтому обрабатываемые продукты следует просеивать, провеивать, промывать либо использовать магнитные, гравитационные или инерционные улавливатели.

Рис. 5.11. Камнеуловитель: / - пневматический тру­бопровод; 2 - бункер; 3 - наклонные поверхности; 4 - разгрузочный люк

Особенно трудно очистить волокнистые материалы, так как твердые примеси запутываются в волокнах. Так, для очистки хлопка-сырца от камней перед поступлением его в машины устанавливают гравитационные или инерционные камнеуловители (рис. 5.11).

Металлические примеси в сыпучих и волокнистых материалах улавливают также магнитными уловителями (сепараторами). На рис. 5.12 изображен магнитный уловитель, наиболее широко применяемый в мукомольном и крупяном производстве, а также на комбикормовых заводах. На рис. 5.13 показан разрез электромагнитного сепаратора с вращающимся барабаном.

Следует отметить, что эффективность работы уловителей зависит от их расположения, скорости движения, равномерности и толщины слоя продукта, характера примесей. Устанавливают их, как правило, в начале технологической линии, перед машинами ударного действия. Сепараторы обычно предохраняют машины и от механических повреждений. Их установка диктуется также санитарно-гигиеническими требованиями.

Рис. 5.12. Магнитный сепаратор с постоянными магнитами: / - корпус; 2 - постоянные магниты; 3 - сыпучий материал

Рис. 5.13. Электромагнитный сепаратор с вращающимся барабаном: / - корпус; 2 -неподвижный электромагнит; 3 - поток продукта; 4 - регулировочный винт; 5 - вращающийся барабан из не

магнитного материала; 6 - труба для очищенного продукта; 7 - труба для уловленных примесей

Если есть опасность попадания в машину твердых немагнитных примесей, осуществляют, во-первых, тщательную сортировку сырья, во-вторых, внутреннюю поверхность машин, о которую эти примеси могут удариться, футеруют мягким металлом, резиной или пластмассой.

Искры, образующиеся при ударах подвижных механизмов машин об их неподвижные части . В практике нередко бывает так, что ротор центробежного вентилятора соприкасается со стенками кожуха или быстровращающиеся пильчатые и ножевые барабаны волок но отделительных и трепальных машин ударяются о неподвижные стальные решетки. В таких случаях наблюдается искрообразование. Оно возможно и при неправильной регулировке зазоров, при деформации и вибрации валов, изнашивании подшипников, перекосах, недостаточном креплении на валах режущего инструмента и т. п. В таких случаях возможно не только искрообразование, но и поломка отдельных частей машин. Поломка узла машины, в свою очередь, может быть причиной образования искр, так как частицы металла попадают при этом в продукт.

Основные пожарно-профилактические мероприятия, направленные на предотвращение образования искр удара и трения, сводятся к тщательной регулировке и балансировке валов, правильному подбору подшипников, проверке величины зазоров между вращающимися и неподвижными частями машин, их надежному креплению, исключающему возможность продольных перемещений; предотвращению перегрузки машин.

Перед пуском в работу машина, в которой возможно соударение вращающихся частей о неподвижные, должна проверяться (в неподвижном состоянии, а затем на холостом ходу) на отсутствие перекосов и вибраций, прочность крепления вращающихся частей, наличие необходимых зазоров. В процессе работы при появлении постороннего шума, ударов и сотрясений надо остановить машину для устранения неполадок.

Повышенные требования по искробезопасности предъявляются к производственным помещениям с наличием ацетилена, этилена, окиси углерода, паров сероуглерода, нитросоединений и подобных им легковоспламеняющихся или нестойких веществ, полы и площадки в которых делают из материала, не образующего искр, или выстилают резиновыми ковриками, дорожками и т. п. Пол помещений, где обрабатывается нитроклетчатка, кроме того, поддерживают в увлажненном состоянии. Тележки и вагонетки должны иметь на колесах ободы из мягкого металла или резины.

Всякое перемещение соприкасающихся друг с другом тел требует затраты энергии на преодоление работы сил трения. Эта энергия в основном превращается в теплоту. При нормальном состоянии и правильной эксплуатации трущихся тел выделяющееся тепло Q т p своевременно отводится специальной системой охлаждения Q охл, а также рассеивается в окружающую среду Q OkP:

Q тр = Q охл + Q окр.

Нарушение этого равенства, то есть увеличение тепловыделе­ния или уменьшение теплоотвода и теплопотерь, ведет к повышению температуры трущихся тел. По этой причине происходят загорания горючей среды или материалов от перегрева подшипников машин, сильно затянутых сальников, барабанов и транспортерных лент, шкивов и приводных ремней, волокнистых материалов при наматывании их на вращающиеся валы инструмента и механически обрабатываемых твердых горючих материалов.

Рис. 5.14. Схема подшипни­ка скольжения: / - шип вала; 2 - корпус подшипника; 3 - станина

Загорание от перегрева подшипников машин и аппаратов. Наиболее пожароопасны подшипники скольжения сильно нагруженныхи высокооборотистых валов. Плохое качество смазки рабочих поверхностей, их загрязнение, перекосы валов, перегрузка машины и чрезмерная затяжка подшипников - все это может явиться причиной перегрева подшипников. Очень часто корпус подшипника загрязняется отложениями горючей пыли (древесной, мучной, хлопковой). Это также создает условия для их перегрева Примерную величину температуры подшипника скольжения (см. рис. 5.14) можно определить расчетным путем. Температура поверхности подшипника при нарушении режима его работы изменяется во времени. Для отрезка времени dx можно написать следующее уравнение теплового баланса:

d Q t р = dQ нагр+ dQ oxл+ dQ 0 K p, (5.7)

где dQ T p - количество тепла, выделяющегося при работе подшипника;

dQ нагр - количество тепла, идущего на нагревание подшипника; dQoxл - количество тепла, отводимого принудительной системой охлаждения; d Q 0 K p - потери тепла поверхностью подшипника в окружающую среду.

Количество тепла, выделяющегося при трении поверхностей, определяется по формуле

Q тр =f тр Nl ,

где f тр - коэффициент трения; N - нагрузка; / - относительное перемещение поверхностей.

Тогда применительно к подшипнику (для вращательного движения) работа сил трения определяется выражением

dQ т p =f Tp Nd III /2πndτ = πf ТР Nd III ndτ, (5.8)

где п - частота вращения вала (1/с); d - диаметр шипа вала. Предполагая коэффициент трения величиной постоянной и обозначив произведение постоянных величин а, будем иметь:

dQ Tp = adτ. (5.9)

Количество тепла, затрачиваемого на нагревание подшипника dQ нагр при повышении температуры на dT, будет равно:

dQ narp = mcdT, (5.10)

где т - масса нагреваемых деталей подшипника; с - средняя удельная теплоемкость материала подшипника.

Количество тепла dQ 0 XJI , отводимого принудительной системой охлаждения, можно принять равным нулю, что соответствует наиболее опасному режиму работы подшипника.

Количество тепла dQoup, теряемого поверхностью подшипника в окружающую среду, будет равно:

dQ окр = α(T п-T B)Fdτ, (5.11)

где α - коэффициент теплоотдачи поверхностью подшипника и средой; Т п и Т в - температура поверхности подшипника и воздуха; F - поверхность теплообмена (поверхность подшипника, омываемая окружающим воздухом).

Подставляя найденные значения dQ Tp , dQ narv и dQ 0 Kp в уравнение.(5.7), получим уравнение

adτ = mcdT+a(T n -T B)Fdτ, (5.12)

решение которого при начальных условиях аварии (Т П = Т В) дает:

Коэффициент а определяют из условий теплоотдачи от поверхности цилиндра в окружающую среду при свободной конвекции воздуха.

Полученное уравнение (5.13) дает возможность определить температуру подшипника в любой момент времени аварийного режима его работы или определить продолжительность аварийного режима, в течение которого температура поверхности подшипника достигает опасной величины.

Максимальную температуру подшипника (при τ = ∞) можно определить по формуле

Чтобы избежать пожаровзрывоопасной ситуации, в данном случае вместо подшипников скольжения применяют подшипники качения, систематически их смазывают, контролируют температуру.

В сложных машинах (турбинах, центрифугах, компрессорах) контроль температуры подшипников осуществляют с помощью систем КИПиА.

Визуальный контроль температуры подшипников осуществляют нанесением термочувствительных красок, изменяющих свой цвет при нагревании, на корпуса подшипников. Предотвратить перегрев подшипников позволяют системы принудительной смазки, устройство которых должно обеспечивать контроль наличия масла, замену отработанного масла свежим (с заданными рабочими характеристиками), быстрое и легкое удаление подтеков масла с частей машины.

В качестве примера можно привести модернизацию системы смазки подшипников сушильных цилиндров и сукноведущих валиков бумаго- и картоноделательных машин на целлюлозно-бумаж ном комбинате в Архангельской области. В результате этой модернизации пожары и загорания в соответствующих системах практически прекратились.

Первоначально для визуального контроля за поступлением масла в подшипники были предусмотрены капельницы. Помещены они были под кожухами машин, в зоне высоких температур, что практически исключало возможность систематического контроля. По (предложению объектовой пожарной части и пожарно-технической комиссии предприятия капельницы заменили ротаметрами, вынесенными за пределы машины. Это позволило визуально контролировать поступление масла, уменьшить количество разъемных соединений в маслосистеме, тем самым сократив масляные подтеки на станинах и узлах подшипников.

Кроме того, по первоначальному проекту масло в подшипниках заменяли только при планово-предупредительных ремонтах или планово-техническом обслуживании. Контролировать наличие смазки при эксплуатации машины было трудно. Исправность под­шипников проверяли «на слух». При реконструкции машин была смонтирована централизованная система смазки: из емкости (10 м 3), установленной в отдельном помещении, шестеренчатым насосом отфильтрованное масло стали подавать в напорные трубопроводы и через ответвления - к ротаметрам, от ротаметров - к подшипникам. Пройдя через подшипник, масло попадало в отстойник и фильтр, где очищалось от механических примесей, охлаждалось и снова поступало в рабочую емкость. Давление, температура и уровень масла в баке контролировались автоматически. При остановке маслонасосов и падении давления в напорной линии срабатывала звуковая и световая сигнализация, включались резервные насосы.

Для очистки машин от подтеков масла и оседающей на них пыли оказалось эффективным применение 2%-ного раствора тех­нического моющего средства ТМС-31 (при 50...70° С). По всей длине машины устроена стационарная система для мойки агрегатов и механизмов. Внедрение системы очистки позволило ежесменно, не останавливая машины, смывать подтеки масла и пыль. Кроме того, из производства изъято 10 т керосина, значительно улучшены условия труда работающих.

Перегревы и воспламенения транспортерных лент и приводных ремней наступают в основном в результате длительного проскальзывания ремня или ленты относительно шкива. Такое проскальзывание, называемое буксованием, возникает в силу несоответствия между передаваемым усилием и натяжением ветвей ремня (ленты). При буксовании вся энергия расходуется на трение ремня о шкив, в результате чего выделяется значительное количество тепла. Наиболее часто буксование транспортерных лент, лент элеваторов и ременных передач возникает из-за перегрузки или слабого натя­жения ремня. У элеваторов причиной буксования чаще всего является завал башмака, то есть такое состояние, когда ковш элеватора не может пройти сквозь толщу транспортируемого вещества. К перегрузке и буксованию могут привести защемление ленты, перекосы и т. п.

Максимальную температуру барабана или шкива при длительной пробуксовке ленты или ремня можно определить по формуле (5.14).

Во избежание перегревов и загораний транспортерных лент и приводных ремней нельзя допускать работу с перегрузкой; следует контролировать степень натяжения ленты, ремня, их состояние Нельзя допускать завалов башмаков элеваторов продукцией, перекосов лент и трения их о кожухи и другие рядом находящиеся предметы. В некоторых случаях (при использовании мощных высокопроизводительных транспортеров и элеваторов) применяют устройства и приспособления, автоматически сигнализирующие о работе передачи с перегрузкой и останавливающие движение ленты при завале башмака элеватора.

Иногда для уменьшения буксования ремень трансмиссии посыпают канифолью, но это дает лишь кратковременный эффект. Обработка же ремня канифолью способствует образованию зарядов статического электричества, что представляет определенную пожарную опасность. Лучше в этом случае использовать клиноременную передачу.

Загорание волокнистых материалов при наматывании их на валы наблюдается на прядильных фабриках, льнозаводах, а также в комбайнах при уборке зерновых культур. Волокнистые материалы и соломистые продукты наматываются на валы около подшипников. Наматывание сопровождается постепенным уплотнением массы, а затем сильным нагреванием ее при трении о стенки машины, обугливанием и, наконец, воспламенением. Иногда загорание происходит в результате наматывания волокнистых материалов на валы транспортеров, перемещающих отходы и готовую продукцию. На прядильных фабриках загорания часто возникают в результате обрыва шнура или тесьмы, с помощью которых приводятся во вращение веретена прядильных машин.

Наматыванию волокнистых материалов на вращающиеся валы машин способствует наличие увеличенного зазора между валом иподшипником (попадая в этот зазор, волокно заклинивается, защемляется, начинается процесс наматывания его на вал со все более сильным уплотнением слоев), наличие оголенных участков вала, с которыми соприкасаются волокнистые материалы, а также использование влажного и загрязненного сырья.

Для предотвращения наматывания волокнистых материалов на вращающиеся валы машин необходимо защитить валы от непосредственного соприкосновения с обрабатываемыми волокнистыми материалами путем использования втулок (рис. 5.15), цилиндрических и конических кожухов, кондукторов, направляющих планок, противонамоточных щитов и т. п. Кроме того, следует установить минимальные зазоры между цапфами вала и подшипниками, не допуская их увеличения; вести систематическое наблюдение за ва­лами, где может быть наматывание, своевременно очищая их от волокон, защитить их специальными противонамоточными острыми ножами, разрезающими наматываемое волокно. Такую защиту имеют, например, трепальные машины на льнозаводах.

Рис. 5.15. Защита вала от наматывания волокнистых материа­лов: а - свободно насаженной прямой втулкой; б - неподвижной конусной втулкой; 1 - подшипник; 2 - вал; 3 - защитная втулка

Тепловое проявление механической энергии в условиях производства наблюдается при работе прессов и компрессорных установок. Пожарная опасность этих механизмов рассмотрена в главах 10 и 11 данного учебника.

§ 5.4. Тепловое проявление химических реакций -

Искровой разряд

Искрово́й разря́д (искра электрическая) - нестационарная форма электрического разряда , происходящая в газах . Такой разряд возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом - «треском» искры. Температура в главном канале искрового разряда может достигать 10 000 . В природе искровые разряды часто возникают в виде молний . Расстояние, «пробиваемое» искрой в воздухе, зависит от напряжения и считается равным 10 кВ на 1 сантиметр.

Условия

Искровой разряд обычно происходит, если мощность источника энергии недостаточна для поддержания стационарного дугового разряда или тлеющего разряда . В этом случае одновременно с резким возрастанием разрядного тока напряжение на разрядном промежутке в течение очень короткого времени (от несколько микросекунд до нескольких сотен микросекунд) падает ниже напряжения погасания искрового разряда, что приводит к прекращению разряда. Затем разность потенциалов между электродами вновь растет, достигает напряжения зажигания и процесс повторяется. В других случаях, когда мощность источника энергии достаточно велика, также наблюдается вся совокупность явлений, характерных для этого разряда, но они являются лишь переходным процессом, ведущим к установлению разряда другого типа - чаще всего дугового . Если источник тока не способен поддерживать самостоятельный электрический разряд в течение длительного времени, то наблюдается форма самостоятельного разряда, называемая искровым разрядом.

Природа

Искровой разряд представляет собой пучок ярких, быстро исчезающих или сменяющих друг друга нитевидных, часто сильно разветвленных полосок - искровых каналов. Эти каналы заполнены плазмой , в состав которой в мощном искровом разряде входят не только ионы исходного газа, но и ионы вещества электродов , интенсивно испаряющегося под действием разряда. Механизм формирования искровых каналов (и, следовательно, возникновения искрового разряда) объясняется стримерной теорией электрического пробоя газов. Согласно этой теории, из электронных лавин, возникающих в электрическом поле разрядного промежутка, при определенных условиях образуются стримеры - тускло светящиеся тонкие разветвленные каналы, которые содержат ионизированные атомы газа и отщепленные от них свободные электроны. Среди них можно выделить т. н. лидер - слабо светящийся разряд, «прокладывающий» путь для основного разряда. Он, двигаясь от одного электрода к другому, перекрывает разрядный промежуток и соединяет электроды непрерывным проводящим каналом. Затем в обратном направлении по проложенному пути проходит главный разряд, сопровождаемый резким возрастанием силы тока и количества энергии, выделяющегося в них. Каждый канал быстро расширяется, в результате чего на его границах возникает ударная волна. Совокупность ударных волн от расширяющихся искровых каналов порождает звук, воспринимаемый как «треск» искры (в случае молнии - гром).

Напряжение зажигания искрового разряда, как правило, достаточно велико. Напряженность электрического поля в искре понижается от нескольких десятков киловольт на сантиметр (кв/см) в момент пробоя до ~100 вольт на сантиметр (в/см) спустя несколько микросекунд. Максимальная сила тока в мощном искровом разряде может достигать значений порядка нескольких сотен тысяч ампер.

Особый вид искрового разряда - скользящий искровой разряд , возникающий вдоль поверхности раздела газа и твёрдого диэлектрика, помещенного между электродами, при условии превышения напряженностью поля пробивной прочности воздуха. Области скользящего искрового разряда, в которых преобладают заряды какого-либо одного знака, индуцируют на поверхности диэлектрика заряды другого знака, вследствие чего искровые каналы стелются по поверхности диэлектрика, образуя при этом так называемые фигуры Лихтенберга . Процессы, близкие к происходящим при искровом разряде, свойственны также кистевому разряду, который является переходной стадией между коронным и искровым.

Поведение искрового разряда очень хорошо можно разглядеть на замедленной съёмке разрядов (Fимп.=500 Гц,U=400 кВ) , полученных с трансформатора Тесла. Средний ток и длительность импульсов недостаточна для зажигания дуги, но для образования яркого искрового канала вполне пригодна.

Примечания

Источники

  • А. А. Воробьев, Техника высоких напряжений. - Москва-Ленинград, ГосЭнергоИздат, 1945.
  • Физическая энциклопедия, т.2 - М.:Большая Российская Энциклопедия стр.218 .
  • Райзер Ю. П. Физика газового разряда. - 2-е изд. - М .: Наука, 1992. - 536 с. - ISBN 5-02014615-3

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Искровой разряд" в других словарях:

    - (искра), неустановившийся электрич. разряд, возникающий в том случае, когда непосредственно после пробоя разрядного промежутка напряжение на нём падает в течение очень короткого времени (от неск. долей мкс до сотен мкс) ниже величины напряжения… … Физическая энциклопедия

    искровой разряд - Электрический импульсный разряд в форме светящейся нити, происходящий при высоком давлении газа и характеризующийся большой интенсивностью спектральных линий ионизированных атомов или молекул. [ГОСТ 13820 77] искровой разряд Полный разряд в… … Справочник технического переводчика

    - (искра электрическая) нестационарный электрический разряд в газе, возникающий в электрическом поле при давлении газа до нескольких атмосфер. Отличается извилистой разветвленной формой и быстрым развитием (ок. 10 7 с). Температура в главном канале … Большой Энциклопедический словарь

    Kibirkštinis išlydis statusas T sritis fizika atitikmenys: angl. spark discharge vok. Funkenentladung, f; Funkentladung, f rus. искровой разряд, m pranc. décharge par étincelles, f … Fizikos terminų žodynas

    Искра, одна из форм электрического разряда в газах; возникает обычно при давлениях порядка атмосферного и сопровождается характерным звуковым эффектом «треском» искры. В природных условиях И. р. наиболее часто наблюдается в виде молнии… … Большая советская энциклопедия

    Искра электрическая, нестационарный электрический разряд в газе, возникающий в электрич. поле при давлении газа до неск. сотен кПа. Отличается извилистой разветвлённой формой и быстрым развитием (ок. 10 7 с), сопровождается характерным звуковым… … Большой энциклопедический политехнический словарь

    - (искра электрическая), нестационарный электрич. разряд в газе, возникающий в электрич. поле при давлении газа до неск. атм. Отличается извилистой разветвлённой формой и быстрым развитием (ок. 10 7с). Темп pa в гл. канале И. р. достигает 10 000 К … Естествознание. Энциклопедический словарь

Страница 5 из 14

Удары твердых тел с образованием искр.

При определенной силе удара некоторых твердых тел друг о друга могут образовываться искры, которые называют искрами удара или трения.

Искры представляют собой нагретые до высокой температуры (раскаленные) частицы металла или камня (в зависимости от того, какие твердые тела участвуют в соударении) размером от 0,1 до 0,5 мм и более.

Температура искр удара из обычных конструкционных сталей достигает температуры плавления металла - 1550 °С.

Несмотря на высокую температуру искры ее воспламеняющая способность сравнительно невысока, т. к. из-за малых размеров (массы) запас тепловой энергии искры очень мал. Искры способны воспламенить парогазовоздушные смеси, имеющие малый период индукции, небольшую минимальную энергию зажигания. Наибольшую опасность в этой связи представляют ацетилен, водород, этилен, оксид углерода и сероуглерод.

Воспламеняющая способность искры, находящейся в покое, выше летящей, так как неподвижная искра медленнее охлаждается, она отдает тепло одному и тому же объему горючей среды и, следовательно, может его нагреть до более высокой температуры. Поэтому искры, находящиеся в покое, способны воспламенить даже твердые вещества в измельченном виде (волокна, пыли).

Искры в условиях производства образуются при работе с инструментом ударного действия (гаечными ключами, молотками, зубилами и т. п.), при попадании примесей металла и камней в машины с вращающимися механизмами (аппараты с мешалками, вентиляторы, газодувки и т. п.), а также при ударах подвижных механизмов машины о неподвижные (молотковые мельницы, вентиляторы, аппараты с откидными крышками, люками и т. п.).

Мероприятия по предупреждению опасного проявления искр от удара и трения:

  1. Применение во взрывоопасных зонах (помещениях) применять искробезопасного инструмента.
  2. Обдув чистым воздухом места производства ремонтных и др. работ.
  3. Исключение попадания в машины металлических примесей и камней (магнитные уловители и камнеуловители).
  4. Для предупреждения искр от ударов подвижных механизмов машин о неподвижные:
    1. тщательная регулировка и балансировка валов;
    2. проверка зазоров между этими механизмами;
    3. недопущение перегрузки машин.
  5. Применять искробезопасные вентиляторы для транспортировки паро- и газовоздушных смесей, пылей и твердых горючих материалов.
  6. В помещениях получения и хранения ацетилена, этилена и т.п. полы выполнять из неискрящего материала или застилать их резиновыми ковриками.

Поверхностное трение тел.

Перемещение относительно друг друга соприкасающихся тел требует затраты энергии на преодоление сил трения. Эта энергия почти целиком превращается в теплоту, которая, в свою очередь, зависит от вида трения, свойств трущихся поверхностей (их природы, степени загрязнения, шероховатости), от давления, размера поверхности и начальной температуры. При нормальных условиях выделяющееся тепло своевременно отводится, и этим обеспечивается нормальный температурный режим. Однако при определенных условиях температура трущихся поверхностей может повыситься до опасных значений, при которых они могут стать источником зажигания.

Причинами роста температуры трущихся тел в общем случае является увеличение количества тепла или уменьшение теплоотвода. По этим причинам в технологических процессах производств происходят опасные перегревы подшипников, транспортных лент и приводных ремней, волокнистых горючих материалов при наматывании их на вращающиеся валы, а также твердых горючих материалов при их механической обработке.

Мероприятия по предупреждению опасного проявления поверхностного трения тел:

  1. Замена подшипников скольжения на подшипники качения.
  2. Контроль за смазкой, температурой подшипников.
  3. Контроль за степенью натяжения транспортерных лент, ремней, не допущение работы машин с перегрузкой.
  4. Замена плоскоременных передач на клиноременные.
  5. Для предупреждения наматывания волокнистых материалов на вращающиеся валы используют:
    1. применение свободнонасаженных втулок, кожухов и т.п. для защиты открытых участков валов от контакта с волокнистым материалом;
    2. предотвращение перегрузки;
    3. устройство специальных ножей для срезания наматывающихся волокнистых материалов;
    4. установка минимальных зазоров между валом и подшипником.
  6. При механической обработке горючих материалов необходимо:
    1. соблюдать режим резания,
    2. своевременно затачивать инструмент,
    3. использовать локальное охлаждения места резания (эмульсии, масла, вода и т.п.).

Расчет параметров источников пожара (взрыва)

На этом этапе необходимо оценить возможность источников зажигания инициировать горючие вещества.

В расчете принято четыре источника зажигания:

а) вторичное действие молнии;

б) искры короткого замыкания;

в) искры электросварки;

г) колба лампы накаливания.

д) горящую изоляцию электрокабеля (провода)

Вторичное воздействие молнии

Опасность вторичного воздействия молнии заключается в искровых разрядах, возникающих в результате индукционного и электромагнитного воздействия атмосферного электричества на производственное оборудование, трубопроводы и строительные конструкции. Энергия искрового разряда превышает 250 мДж и достаточна для воспламенения горючих веществ с минимальной энергией зажигания до 0,25 Дж.

Вторичное действие удара молнии опасно для газа, который заполнил весь объём помещения.

Термическое действие токов короткого действия

Ясно, что при коротком замыкании, когда отказывает аппарат защиты, появившиеся искры способны воспламенить ЛВЖ и взорвать газ (эта возможность оценивается ниже). Когда срабатывает защита, ток короткого замыкания длится короткое время и способен только воспламенить поливинилхлоридную проводку.

Температура проводника t пр о С, нагреваемого током короткого замыкания, вычисляется по формуле

где t н - начальная температура проводника, о С;

I к.з. - ток короткого замыкания, А;

R - сопротивление (активное) проводника, Ом;

к.з. - продолжительность короткого замыкания, с;

С пр - теплоёмкость материала провода, Дж*кг -1 *К -1 ;

m пр - масса провода, кг.

Чтобы проводка воспламенилась необходимо, чтобы температура t пр была больше температуры воспламенения поливинилхлоридной проводки t вос.пр. =330 о С.

Начальную температуру проводника принимаем равной температуре окружающей среде 20 о С. Выше в главе 1.2.2 были рассчитаны активное сопротивление проводника (Ra=1,734 Ом) и ток короткого замыкания (I к.з. =131,07 А). Теплоёмкость меди С пр =400 Дж*кг -1 *К -1 . Масса провода есть произведение плотности на объём, а объём - произведение длины L на площадь сечения проводника S

m пр =*S*L (18)

По справочнику находим значение =8,96*10 3 кг/м 3 . В формулу (18) подставляем значение площади сечения второго провода, из табл. 11, самого короткого, то есть L=2 м и S=1*10 -6 м. Масса провода равна

m пр =8,96*10 3 *10 -6 *2=1,792*10 -2

При продолжительности короткого замыкания к.з. =30 мс, по табл.11, проводник нагреется до температуры

Данной температуры не хватит, чтобы воспламенить поливинилхлоридную проводку. А если отключит защита, то необходимо будет посчитать вероятность загорания поливинилхлоридной проводки.

Искры короткого замыкания

При коротком замыкании возникают искры, которые имеют начальную температуру 2100 о С и способны воспламенить ЛВЖ и взорвать газ.

Начальная температура медной капли 2100 о С . Высота, на которой происходит короткое замыкание, 1 м, а расстояние до лужи ЛВЖ 4 м. Диаметр капли d к =2,7 мм или d к =2,7*10 -3 .

Количество теплоты, которое капля металла способна отдать горючей среде при остывании до температуры её воспламенения, рассчитывается следующим образом: среднюю скорость полёта капли металла при свободном падении w ср, м/с, вычисляют по формуле

где g - ускорение свободного падения, 9,81 м/с 2 ;

Н - высота падения, 1 м.

Получаем, что средняя скорость полёта капли при свободном падении

Продолжительность падения капли может быть рассчитана по формуле

Затем вычисляют объём капли Vк по формуле

Масса капли m к, кг:

где - плотность металла в расплавленном состоянии, кг*м -3 .

Плотность меди в расплавленном состоянии (по данным преподавателя) равна 8,6*10 3 кг/м 3 , а масса капли по формуле (22)

m к =8,6*10 3 *10,3138*10 -9 =8,867*10 -5

Время полёта капли металла в расплавленном (жидком) состоянии р, с.:

где С р - удельная теплоёмкость расплава материала капли, для меди С р =513 Дж*кг -1 *К -1 ;

S к - площадь поверхности капли, м 2 , S к =0,785d к 2 =5,722*10 -6 ;

Т н, Т пл - температура капли в начале полёта и температура плавления металла, соответственно, Т н =2373 К, Т пл =1083 К ;

Т о - температура окружающего воздуха, Т о =293 К;

Коэффициент теплоотдачи, Вт*м -2 *К -1 .

Коэффициент теплоотдачи рассчитывается следующей последовательности:

1) сначала вычисляют число Рейнольдса

где v=1,51*10 -5 1/(м 2 *с) - коэффициент кинематической вязкости воздуха при температуре 293 К,

где =2,2*10 -2 Вт*м -1 *К -1 - коэффициент теплопроводности воздуха,

1*10 2 Вт*м -2 *К -1 .

Рассчитав коэффициент теплоотдачи найдем время полёта капли металла в расплавленном (жидком) состоянии по формуле (23)

Так как < р, то конечную температуру капли определяют по формуле

Температура самовоспламенения пропана 466 о С, а температура капли (искры) к моменту подлета её к луже ЛВЖ 2373 К или 2100 о С. При данной температуре изопрен возгорится и будет устойчиво гореть, а пропан взорвется ещё при возникновении искры короткого замыкания. Температура вспышки изопрена -48 0 С.