Ремонт Дизайн Мебель

Солнечная светимость. Строение солнца Светимость солнца равна

Ближайшая к нам звезда – это конечно Солнце. Расстояние от Земли до него по космическим параметрам совсем небольшое: от Солнца до Земли солнечный свет идет всего лишь 8 минут.

Солнце – это не обычный желтый карлик, как считали ранее. Это центральное тело солнечной системы, возле которой вертятся планеты, с большим количеством тяжелых элементов. Это звезда, образовавшаяся после нескольких взрывов сверхновых, около которой сформировалась планетная система. За счет расположения, близкого к идеальным условиям, на третьей планете Земля возникла жизнь. Возраст Солнца насчитывает уже пять миллиардов лет. Но давайте разберемся, почему же оно светит? Какое строение Солнца, и каковы его характеристики? Что ждет его в будущем? Насколько значительное влияние оно оказывает на Землю и ее обитателей? Солнце – это звезда, вокруг которой вращаются все 9 планет солнечной системы, в том числе и наша. 1 а.е. (астрономическая единица) = 150 млн. км – таким же является и среднее расстояние от Земли до Солнца. В Солнечную систему входят девять больших планет, около сотни спутников, множество комет, десятки тысяч астероидов (малых планет), метеорные тела и межпланетные газ и пыл. В центре всего этого и находится наше Солнце.

Солнце светит уже миллионы лет, что подтверждают современные биологические исследования, полученные из остатков сине-зелено-синих водорослей. Изменись температура поверхности Солнца хотя бы на 10 %, и на Земле, погибло бы все живое. Поэтому хорошо, что наша звезда равномерно излучает энергию, необходимую для процветания человечества и других существ на Земле. В религиях и мифах народов мира, Солнце постоянно занимало главное место. Почти у всех народов древности, Солнце было самым главным божеством: Гелиос – у древних греков, Ра – бог Солнца древних египтян и Ярило у славян. Солнце приносило тепло, урожай, все почитали его, потому что без него не было бы жизни на Земле. Размеры Солнца впечатляют. Например, масса Солнца в 330 000 раз больше массы Земли, а его радиус в 109 раз больше. Зато плотность нашего звездного светила небольшая – в 1,4 раза больше, чем плотность воды. Движение пятен на поверхности заметил еще сам Галилео Галилей, таким образом доказав, что Солнце не стоит на месте, а вращается.

Конвективная зона Солнца

Радиоактивная зона около 2/3 внутреннего диаметра Солнца, а радиус составляет около 140 тыс.км. Удаляясь от центра, фотоны теряют свою энергию под влиянием столкновения. Такое явление называют — феномен конвекции. Это напоминает процесс, происходящий в кипящем чайнике: энергии, поступающей от нагревательного элемента, намного больше того количества, которое отводится тепло проводимостью. Горячая вода, находящаяся в близости от огня, поднимается, а более холодная опускается вниз. Этот процесс называются конвенция. Смысл конвекции в том, что более плотный газ распределяется по поверхности, охлаждается и снова идет к центру. Процесс перемешивания в конвективной зоне Солнца осуществляется непрерывно. Глядя в телескоп на поверхность Солнца, можно увидеть ее зернистую структуру — грануляции. Ощущение такое, что оно состоит из гранул! Это связано с конвекцией, происходящей под фотосферой.

Фотосфера Солнца

Тонкий слой (400 км) — фотосфера Солнца, находится прямо за конвективной зоной и представляет собой видимую с Земли «настоящую солнечную поверхность». Впервые гранулы на фотосфере сфотографировал француз Янссен в 1885г. Среднестатистическая гранула имеет размер 1000 км, передвигается со скоростью 1км/сек и существует примерно 15 мин. Темные образования на фотосфере можно наблюдать в экваториальной части, а потом они сдвигаются. Сильнейшие магнитные поля, являются отличительно чертой таких пятен. А темный цвет получается вследствие более низкой температуры, относительно окружающей фотосферы.

Хромосфера Солнца

Хромосфера Солнца (цветная сфера) – плотный слой (10 000 км) солнечной атмосферы, который находится прямо за фотосферой. Хромосферу наблюдать достаточно проблематично, за счет ее близкого расположения к фотосфере. Лучше всего ее видно, когда Луна закрывает фотосферу, т.е. во время солнечных затмений.

Солнечные протуберанцы – это огромные выбросы водорода, напоминающие светящиеся длинные волокна. Протуберанцы поднимаются на огромные расстояние, достигающие диаметра Солнца (1.4 млм км), двигаются со скоростью около 300 км/сек, а температура при этом, достигает 10 000 градусов.

Солнечная корона – внешние и протяженные слои атмосферы Солнца, берущие начало над хромосферой. Длина солнечной короны является очень продолжительной и достигает значений в несколько диаметров Солнца. На вопрос где именно она заканчивается, ученые пока не получили однозначного ответа.

Состав солнечной короны – это разряженная, высоко ионизированная плазма. В ней содержатся тяжелые ионы, электроны с ядром из гелия и протоны. Температура короны достигает от 1 до 2ух млн градусов К, относительно поверхности Солнца.

Солнечный ветер – это непрерывное истечение вещества (плазмы) из внешней оболочки солнечной атмосферы. В его состав входят протоны, атомные ядра и электроны. Скорость солнечного ветра может меняться от 300 км/сек до 1500 км/сек, в соответствии с процессами, происходящими на Солнце. Солнечный ветер, распространяется по всей солнечной системе и, взаимодействуя с магнитным полем Земли, вызывает различный явления, одним из которых, является северное сияние.

Характеристики Солнца

Масса Солнца: 2∙1030 кг (332 946 масс Земли)
Диаметр: 1 392 000 км
Радиус: 696 000 км
Средняя плотность: 1 400 кг/м3
Наклон оси: 7,25° (относительно плоскости эклиптики)
Температура поверхности: 5 780 К
Температура в центре Солнца: 15 млн градусов
Спектральный класс: G2 V
Среднее расстояние от Земли: 150 млн. км
Возраст: 5 млрд. лет
Период вращения: 25,380 суток
Светимость: 3,86∙1026 Вт
Видимая звездная величина: 26,75m

Все звезды имеют цвет. От красных карликов и красных гигантов до белых и желтых звезд, до синих гигантов и супергигантов. Цвет звезды зависит от температуры. Когда фотоны вырываются изнутри звезды в космос, они имеют разные количества энергии. может испускать инфракрасный, красный, синий и ультрафиолетовый свет в одно и то же время. Они даже испускают рентгеновское излучение и .

Если звезда холодная, менее 3,500 Кельвин, его цвет будет красным. Это из-за того, что испускается больше красных фотонов, чем любых других в видимом свете. Если звезда очень горячая, свыше 10,000 Кельвин, ее цвет будет синим. И снова, потому что там больше синих фотонов, струящихся из звезды.

Температура Солнца приблизительно равна 6,000 Кельвин. Солнце, и звезды как наше Солнце, выглядят белыми. Это из-за того, что мы наблюдаем все различные цветные фотоны, исходящий из Солнца в одно и то же время. Когда вы складываете эти цвета, вы получаете чистый белый.

Белый цвет внутри этого черного квадрата приблизительно цвет Солнца.

Так почему Солнце выглядит желтым здесь на Земле? Атмосфера Земли рассеивает солнечный свет, удаляя более короткие длины волн света - синий и фиолетовый. Как только вы удалите эти цвета из спектра света, исходящие от Солнца, оно выглядит желтым. Но если вы бы полетели и посмотрели Солнце из космоса, цвет Солнца был бы чистым белым.

Температура Солнца

Поверхность Солнца, часть, которую мы видим, называется фотосфера. Фотоны, струящиеся от поверхности Солнца различны по температуре от 4500 Кельвин до более 6000 Кельвин. Средняя температура Солнца около 5800 Кельвин. В других единицах измерения, Солнце - 5500°C или 9,900°F.

Фотосфера Солнца. Предоставлено: NASA/SOHO.

Но это только средняя температура. Отдельные фотоны могут быть холоднее и краснее, или горячее и синее. Цвет Солнца, который мы видим здесь на Земле, в среднем это все фотоны, струящиеся от Солнца.

Но это только поверхность. Солнце сдерживается вместе взаимной гравитацией своей массы. Если бы вы могли спуститься вниз Солнца, вы бы почувствовали, что температура и давление увеличиваются на всем пути к ядру. И вниз к ядру температуры достигают 15.7 миллионов Кельвин. При таком давлении и температуре уже может иметь место водородный ядерный синтез. Это где атомы водорода соединяются вместе в гелий, выпуская фотоны гамма радиации. Эти фотоны выпускаются и поглощаются атомами в Солнце, когда они медленно прокладывают свой путь в космос. Может занять 100,000 лет для того, чтобы фотон, образовавшийся в ядре, в конце концов, достиг фотосферы и совершил скачок в космос.

Поверхность Солнца

Возможно, наиболее знакомая особенность на поверхности Солнца - это солнечные пятна. Это относительно более холодные регионы на поверхности Солнца, где линии магнитного поля пронизывают поверхность Солнца. Солнечные пятна могут быть источником солнечных вспышек и выбросов корональной массы.


Вид поверхности Солнца с научного японского спутника Hinode.

Когда мы смотрим на Солнце, мы замечаем, что центр Солнца выглядит гораздо ярче, чем границы. Это называется "затемнением лимба" и происходит, потому что мы наблюдаем свет, который прошел через поверхность Солнца под углом, и имел больше преград - и поэтому темнее.

С хорошим телескопом (и даже лучшим солнечным фильтром), возможно увидеть, что фотосфера не гладкая. Вместо этого, она покрыта конвекционными ячейками, называемыми гранулами. Они вызваны конвекционными потоками плазмы внутри конвекционной зоны Солнца. Горячая плазма поднимается в столбах через этот конвекционный регион Солнца, выпускает свою энергию и затем охлаждается и погружается. Представьте пузыри, поднимающиеся к поверхности в кипящей воде. Эти гранулы могут быть 1000 км в ширину и существовать 8-20 минут до рассеивания.

Огромные выбросы корональной массы могут также быть видны выстреливающими с поверхности Солнца. Они создаются, когда свернувшееся магнитное поле Солнца резко обрывается и разъединяется. Это разъединение выпускает огромное количество энергии, и выбрасывает заряженную плазму в космос. Когда эта плазма достигает Земли, она создает красивые полярные сияния, лучше всего видимые на полюсах Земли.

Светимость Солнца

Астрономы измеряют яркость звезд различными инструментами, но им нужен способ для сравнения. Вот, где появляется наше Солнце. Как каждый знает, Солнце отдает примерно 3.839 x 10 33 ерг в секунду энергии. Другие звезды во Вселенной могут только отдавать долю солнечной светимости, или несколько кратных ей. Наше Солнце - это звездный критерий.


Массивный выброс корональной массы. Эта фотография показывает размер Земли для сравнения (вверху слева). Предоставлено: NASA / SDO / J. Major.

Представьте, что Солнце окружено рядами прозрачных сфер - как слои лука. Количество энергии, солнечная светимость, проходящее через каждую из этих сфер каждую секунду, - всегда одно и то же. Тем не менее, область поверхности сферы становится больше и больше. Это то, почему дальше вы получаете от звезды меньше света, который видите.

Это называется законом обратных квадратов, и позволяет астрономам вычислять солнечную светимость; фактически, это позволяет им вычислять светимость всех звезд. Ученые отправляли миссии в космос, которые измеряют общее количество энергии, падающей на их датчики. Из этой информации, астрономы могут вычислять, сколько энергии падает на всю Землю, а затем и сколько приходит от Солнца.

И это также работает и для звезд. Космический корабль обнаруживает светимость другой звезды, факторы в расстоянии и помогает вычислить первоначальную светимость звезды.

Хотя наше Солнце стабильное, оно испытывает незначительные изменения в солнечной светимости. Эти изменения вызваны солнечными пятнами, которые затемняют регионы, и яркими структурами на солнечном диске в течение 11-ти летнего солнечного цикла. Подробные измерения, проводимые в течение последних 30 лет, обнаружили, что они не достаточны, чтобы привести к ускорению глобального потепления, которое мы обнаруживаем здесь на Земле.

Визуально звезды для земного наблюдателя выглядят по-разному: одни светят ярче, другие тусклее.

Однако это еще не говорит об истинной мощности их излучения, поскольку звезды находятся на разных расстояниях.

Например, голубой Ригель из созвездия Ориона имеет видимую звездную величину 0,11, а находящийся недалеко на небе ярчайший Сириус имеет видимую звездную величину минус 1,5.

Тем не менее Ригель излучает энергии в видимых лучах в 2200 раз больше, чем Сириус, а кажется слабее только потому, что находится в 90 раз дальше от нас по сравнению с Сириусом.

Таким образом, видимая звездная величина сама по себе не может быть характеристикой звезды, поскольку зависит от расстояния.

Истинной характеристикой мощности излучения звезды служит её светимость, т. е. полная энергия, которую излучает звезда в единицу времени.

Светимость в астрономии – полная энергия, излучаемая астрономическим объектом (планетой, звездой, галактикой и т. п.) в единицу времени. Измеряется в абсолютных единицах: ваттах (Вт) – в Международной системе единиц СИ; эрг/с – в системе СГС (сантиметр-грамм-секунда); либо в единицах светимости Солнца (светимость Солнца L s = 3,86·10 33 эрг/с или 3,8·10 26 Вт).

Светимость не зависит от расстояния до объекта, от него зависит только видимая звёздная величина.

Светимость – одна из важнейших звёздных характеристик, позволяющая сравнивать между собой различные типы звёзд на диаграммах «спектр – светимость», «масса – светимость».

где R – радиус звезды, T – температура её поверхности, σ – постоянная Стефана-Больцмана.

Светимости звезд, надо отметить, весьма различны: существуют звёзды, светимость которых в 500 000 раз больше солнечной, и есть звезды-карлики, светимость которых примерно во столько же раз меньше.

Светимость звезды можно измерять в физических единицах (скажем, в ваттах), но астрономы чаще выражают светимости звезд в единицах светимости Солнца.

Также можно выражать истинную светимость звезды с помощью абсолютной звездной величины .

Представим себе, что мы расположили все звезды рядом и рассматриваем их с одного и того же расстояния. Тогда видимая звездная величина уже не будет зависеть от расстояния и будет определяться только светимостью.

В качестве стандартного расстояния принято значение 10 пс (парсек).

Видимая звездная величина (m), которую бы имела звезда на таком расстоянии, называется абсолютной звездной величиной (M).

Таким образом, абсолютная звездная величина – это количественная характеристика светимости объекта, равная звездной величине, которую имел бы объект на стандартном расстоянии 10 парсек.

Так как освещенность обратно пропорциональна квадрату расстояния, то

где Е - освещенность, создаваемая звездой, которая удалена от Земли на r парсек; E 0 - освещенность от той же звезды со стандартного расстояния r 0 (10 пк).

Используя формулу Погсона, получаем:

m – M = -2,5lg(E/E 0) = -2,5lg(r 0 /r) 2 = -5lgr 0 + 5lgr .

Отсюда следует

M = m + 5lgr 0 - 5lgr .

Для r 0 = 10 пк

M = m + 5 - 5lgr . (1)

Если в (1) r = r 0 = 10 пк , то M = m – по определению абсолютной звездной величины.

Разность между видимой (m) и абсолютной (М) звёздными величинами называют модулем расстояния

m - М = 5 lgr - 5 .

В то время как М зависит только от собственной светимости звезды, m зависит также и от расстояния r (в пс) до неё.

Для примера подсчитаем абсолютную звездную величину для одной из самых ярких и близких к нам звезд – а Центавра.

Ее видимая звездная величина -0,1, расстояние до нее 1,33 пс. Подставляя эти значения в формулу (1), получаем: М = -0,1 + 5 - 5lg1,33 = 4,3 .

Т. е. абсолютная звездная величина а Центавра близка к абсолютной звездной величине Солнца, равной 4,8.

Следует еще учитывать поглощение света звезды межзвездной средой. Такое поглощение ослабляет блеск звезды и увеличивает видимую звездную величину m.

В этом случае: m = М - 5 + 5lgr + A(r) , где слагаемым А(r) учитывается межзвездное поглощение.

Светимость
Видимые и абсолютные звёздные величины
Википедия

Для представления светимости звёзд. Равна светимости Солнца , составляющей 3,827 × 10 26 Вт или 3,827 × 10 33 Эрг /с.

Расчёт константы

Вы можете рассчитать количество солнечной энергии, попадающей на Землю, путём сравнения площади сферы с радиусом, равным расстоянию Земли от Солнца (центр находится в звезде) и площади сечения, сделанного таким образом, чтобы ось вращения планеты принадлежала плоскости сечения.

  • Радиус Земли - 6.378 км.
  • Площадь сечения Земли: S Земля = π×радиус² = 128.000.000 км²
  • Среднее расстояние до Солнца: R Солнце = 150.000.000 км. (1 а.е.)
  • Площадь сферы: S Солнце = 4×π×R Солнце ² = 2,82×10 17 км².
  • Количество энергии в единицу времени, попадающей на Землю: P Земля = P Солнце × S Земля /S Солнце = 1,77×10 17 Вт.
    • Количество энергии (в единицу времени)на квадратный метр: P Земля /S Земля = 1387 Вт/м² (Солнечная постоянная)
    • Человечество примерно потребляет 12×10 12 Вт. Какая площадь необходима для обеспечения энергопотребления? Лучшие солнечные батареи имеют КПД около 33 %. Необходимая площадь составляет 12×10 12 /(1387×0,33) = 26×10 9 м² = 26000 км², или квадрат ~160×160 км. (На самом деле требуется бо́льшая площадь, так как солнце не всегда находится в зените и, к тому же, некоторая часть излучения рассеивается облаками и атмосферой .)

Ссылки

  • I.-J. Sackmann, A. I. Boothroyd (2003). "Our Sun. V. A Bright Young Sun Consistent with Helioseismology and Warm Temperatures on Ancient Earth and Mars ". The Astrophysical Journal 583 (2): 1024-1039.

Wikimedia Foundation . 2010 .

Смотреть что такое "Светимость Солнца" в других словарях:

    В астрономии полная энергия, излучаемая источником в единицу времени (в абсолютных единицах или в единицах светимости Солнца; светимость Солнца = 3,86·1033 эрг/с). Иногда говорят не о полной С., а о С. в некотором диапазоне длин волн. Напр., в… … Астрономический словарь

    Светимость термин, используемый для именования некоторых физических величин. Содержание 1 Фотометрическая светимость 2 Cветимость небесного тела … Википедия

    Светимость звезды, сила света звезды, т. е. величина излучаемого звездой светового потока, заключённого в единичном телесном угле. Термин «светимость звезды» не соответствует термину «светимость» общей фотометрии. С. звезды может относиться как к … Большая советская энциклопедия

    В точке поверхности. одна из световых величин, отношение светового потока, исходящего от элемента поверхности, к площади этого элемента. Единица С. (СИ) люмен с квадратного метра (лм/м2). Аналогичная величина в системе энергетич. величин наз.… … Физическая энциклопедия

    СВЕТИМОСТЬ, абсолютная яркость ЗВЕЗДЫ количество энергии, излучаемой ее поверхностью в секунду. Выражается в ваттах (джоулях в секунду) или в единицах измерения яркости Солнца. Болометрическая светимость измеряет общую мощность света звезды на… … Научно-технический энциклопедический словарь

    СВЕТИМОСТЬ, 1) в астрономии полное количество энергии, испускаемое космическим объектом в единицу времени. Иногда говорят о светимости в некотором диапазоне длин волн, например радиосветимость. Обычно измеряется в эрг/с, Вт или в единицах… … Современная энциклопедия Википедия

Каким же образом стало известно, сколько энергии излучает Солнце?

На протяжении почти полутора столетий астрономы и геофизики затратили много усилий для того, чтобы определить солнечную постоянную. Так называется пол­ное количество энергии солнечного излучения всех длин волн, падающее на площадку в 1 см 2 , поставленную пер­пендикулярно солнечным лучам вне земной атмосферы и на среднем расстоянии Земли от Солнца. Определение солнечной постоянной кажется довольно простой зада­чей. Но это только на первый взгляд. В действительности же исследователь сталкивается с двумя серьезны­ми трудностями.

Прежде всего необходимо создать такой приемник излучения, который с одинаковой чувствительностью вос­принимал бы все цвета видимого света, а также ультра­фиолетовые и инфракрасные лучи - одним словом, весь спектр электромагнитных волн. Напомним читателю, что видимый свет, ультрафиолетовое и рентгеновское излу­чение, гамма-лучи, инфракрасное излучение и радиовол­ны в определенном смысле имеют одинаковую природу. Отличие их друг от друга обусловлено лишь частотой колебаний электромагнитного поля или длиной волны. В табл. 2 указаны длины волн лямбда различных областей спектра электромагнитного излучения, а также частоты v в герцах и энергии квантов hv в электронвольтах).

Как показывает табл. 2, видимая область, имея про­тяженность немного менее октавы, составляет весьма небольшую часть всего спектра электромагнитного излу­чения, простирающегося от гамма-лучей с длиной волны в тысячные доли нанометра до метровых радиоволн, бо­лее чем на 46 октав. Солнце излучает практически во всем этом гигантском диапазоне длин волн, и в солнеч­ной постоянной должна учитываться, как уже сказано, энергия всего спектра. Наиболее подходящими для этой цели являются тепловые приемники, например, термо­элементы и болометры, в которых измеряемое излуче­ние превращается в тепло, а показания прибора зависят от количества этого тепла, т. е. в конечном счете - от мощности падающего излучения, но не от его спектраль­ного состава.

Остроумно устроен компенсационный пиргелиометр Ангстрема, изобретенный в 1895 г. и получивший (с не­принципиальными усовершенствованиями) широкое рас­пространение. Представьте себе две рядом стоящие оди­наковые пластинки (из манганина). Обе они покрыты платиновой чернью или специальным черным лаком. Одна из них освещается и нагревается солнечными лу­чами, а другая закрыта шторкой. Через затененную пла­стинку пропускается электрический ток такой силы (ре­гулируется реостатом), чтобы ее температура была рав­на температуре освещенной пластинки. Мощность тока, необходимая для компенсации солнечного нагрева (от­сюда и название прибора - компенсационный пиргелио­метр) является мерой мощности падающего излучения.

Достоинство пиргелиометра Ангстрема в его просто­те, надежности и хорошей воспроизводимости показа­ний. Именно поэтому он уже более 85 лет применяется в разных странах. Тем не менее измерения с ним нуж­даются во внесении некоторых небольших, но трудно­определяемых поправок. Прежде всего никакое черне­ние (в том числе сажей, платиновой чернью и т. д.) не обеспечивает полного поглощения падающих лучей. Ка­кая-то доля их (порядка 1,5-2%) отражается, причем эта доля может меняться с длиной волны. В связи с этим в последние два десятилетия разработаны полост­ные приборы. Схема одного из них (пиргелиометр ПАКРАД-3, серийно выпускаемый фирмой «Лаборато­рия Эппли», США), приведена на рис. 1.

В верхнюю приемную полость l , образованную ци­линдром 2, конусом 3 с двойными стенками и усечен­ным конусом 4, солнечные лучи попадают через преци­зионную диафрагму 5. Термобатарея 6 позволяет опре­делить повышение температуры в верхней конструкции по сравнению с аналогичны­ми точками нижней, устро­енной в точности так же, как и верхняя (только ко­нус в ней развернут на 180° для компактности). Мощ­ность поглощаемого излуче­ния равна мощности тока, который необходимо пропу­стить по обмотке 7, чтобы при закрытой диафрагме 5 вызвать равное повышение температуры.

Поскольку солнечные лу­чи могут выйти из полости 1 только после нескольких отражений, полость, зачер­ненная изнутри таким же лаком, что и пластинки пир­гелиометра Ангстрема, обладает большим коэффициен­том поглощения. Он составляет 0,997-0,998, а в от­дельных случаях доходит до 0,9995. В этом преимуще­ство полостных приборов, получающих широкое распро­странение.

Вторая трудность определения солнечной постоянной порождается земной атмосферой. Последняя ослабляет любое излучение, причем ослабление сильно зависит от длины волны. Синие и фиолетовые лучи ослабляются значительно больше, чем красные, и еще сильнее ослаб­ляются ультрафиолетовые. Излучение с длиной волны меньше 300 нм вообще полностью задерживается земной атмосферой, как и большая часть инфракрасных лучей. К тому же оптические свойства атмосферы крайне непо­стоянны даже при ясной безоблачной погоде.

Из-за того что лучи разных длин волн ослабляются атмосферой по-разному, коэффициент прозрачности нельзя найти, проводя наблюдения в «белом свете» на приборах типа пиргелиометров, которые регистрируют неразложенное в спектр излучение всех длин волн. Со­вершенно необходим спектрометрический прибор. На­блюдения на нем позволят определить значения коэффи­циента прозрачности атмосферы по отдельности для ря­да длин волн. Только после этого можно вычислить по ним поправку за атмосферу к показаниям пиргелио­метра.

Все это очень осложняет определение солнечной по­стоянной с поверхности Земли. Не удивительно, что на­блюдения, сделанные, например, в прошлом столетии, имели низкую точность, и у разных авторов получались значение, различающиеся в 2 раза и более.

Методически самыми лучшими среди наземных опре­делений по праву считаются работы, начатые в 1900 г. и продолжавшиеся в течение нескольких десятилетий под руководством Ч. Аббота. Они показывали резуль­таты, имевшие разброс 2-3% около среднего значения. Сам Аббот интерпретировал этот разброс как реальные изменения солнечного излучения. Однако впоследствии более рафинированный анализ этих же самых наблю­дений показал, что разброс порожден ошибками, свя­занными прежде всего с недостаточным учетом нестабильностей земной атмосферы.

Между тем для метеорологии и ряда других наук о Земле, а также для астрофизики (в частности, физики планет) необходимы как более точное знание этой ве­личины, так и решение вопроса о том, является ли сол­нечная постоянная действительно постоянной, т. е. про­исходят ли и в каких пределах возможные колебания солнечного излучения.

Наиболее кардинальное решение проблемы дает ис­пользование искусственных спутников Земли. Спутники, предназначенные как раз для измерения солнечной по­стоянной, регулярно «работают» последние 10-12 лет. Вынос приборов за пределы атмосферы (конечно, наряду с усовершенствованием самих приборов) позволяет оп­ределять потоки солнечного излучения с невиданной ра­нее точностью - абсолютное значение до 0,3%, а воз­можные колебания до 0,001% от среднего значения. Тем не менее, несмотря на достигнутую точность, проблема колебаний солнечной постоянной до конца не решена. Установлено только, что их амплитуда (если они суще­ствуют) не более 0,1-0,2%. Не вдаваясь дальше в дис­куссию о стабильности солнечного излучения, отметим, что с точностью до 1 % солнечная постоянная составляет 137 мВт/см 2 , или 1,96 кал (см 2 мин) -1 .

Зная величину солнечной постоянной, мы можем по­лучить интересные данные. Рассмотрим некоторый уча­сток земной поверхности и примем, что угол падения солнечных лучей на него равен 60° (высота Солнца над горизонтом 30°). В этом случае, довольно типичном для условий средних широт, до поверхности Земли дойдет примерно 65% от полного потока излучения Солнца, остальное будет задержано атмосферой. Освещенность земной поверхности нужно еще уменьшить вдвое из-за наклонного падения лучей. Легко подсчитать, что при этих условиях на участок размером 5×10 км (равный площади среднего города) от Солнца поступает мощ­ность в 22 млн. кВт, т. е. больше, чем будет давать весь комплекс 5 электростанций, строящихся в Экибастузе. Далее, зная радиус земного шара, равный 6,371 10 8 см, легко найти площадь «поперечного сечения» Земли (1,275 10 18 см 2) и подсчитать, что мощность солнечного излучения, падающего на всю освещенную Солнцем по­ловину земной поверхности, составляет огромную вели­чину - около 1,7 10 14 кВт. Чтобы представить ее более наглядно, достаточно сказать, что солнечной энергии, падающей на дневную полусферу Земли, достаточно, чтобы за 1 с растопить глыбу льда объемом 0,56 км 3 (длиной и шириной 1 км и высотой 560 м) или за 4 ч нагреть от 0 до 100° С и вслед за тем испарить столько воды, сколько ее имеется в Ладожском озере (908 км 3). Наконец, за 26 сут Солнце посылает на Землю энергии больше, чем ее содержатся во всех разведанных и про­гнозируемых запасах угля, нефти и газа и других ви­дов ископаемых топлив. Эти запасы оцениваются в 13 10 12 т так называемого условного топлива (т. е. то­плива с теплотворной способностью 7000 кал/г, или 29,3 10 6 Дж/кг).

Энергетика всех явлений погоды, всех природных процессов, происходящих в земных атмосфере и гидро­сфере, таких, как ветер, испарение океанов, перенос вла­ги облаками, осадки, ручьи и реки и океанические тече­ния, движение ледников - все это в основном преоб­разованная энергия солнечного излучения, упавшего на Землю. Развитие биосферы определяется теплом и све­том, поэтому некоторые виды топлив, а также вся наша пища, по образному выражению К. А. Тимирязева, «есть консерв солнечных лучей».

Приведем еще одну цифру. Среднее расстояние Зем­ли от Солнца (или большая полуось земной орбиты) составляет 149,6 10 6 км. Отсюда полная светимость Солнца равна 3,82 10 23 кВт, или 3,82 10 33 эрг/с; эта ве­личина почти на 17 порядков превосходит мощность крупнейших технических энергоустановок, таких, как наши крупнейшие гидро- и тепловые электростанции.