Ремонт Дизайн Мебель

Состав атомного ядра. Ядерные силы. Строение атома: ядро, нейтрон, протон, электрон

§1 Заряд и масса, атомных ядер

Важнейшими характеристиками ядра являются его заряд и масса М .

Z - заряд ядра определяется количеством положительных элементарных зарядов сосредоточенных в ядре. Носителем положительного элементарного заряда р = 1,6021·10 -19 Кл в ядре является протон. Атом в целом нейтрален и заряд ядра определяет одновременно число электронов в атоме. Распределение электронов в атоме по энергетическим оболочкам и подоболочкам суще-ственно зависит от их общего числа в атоме. Поэтому заряд ядра в значительной мере определяет распределение электронов по их состояниям в атоме и положение элемента в периодической системе Менделеева. Заряд ядра равен q я = z · e , где z -зарядовое число ядра, равное порядковому номеру элемента в системе Менделеева.

Масса атомного ядра практически совпадает с массой атома, потому что масса электронов всех атомов, кроме водородного, составляет примерно 2,5· 10 -4 массы атомов. Массу атомов выражают в атомных единицах массы (а.е.м.). За а.е.м. принята1/12 масса атома углерода .

1 ае.м. =1,6605655(86)·10 -27 кг.

m я = m a - Z m e .

Изотопами, называются разновидности атомов данного химического элемента, обладающие одинаковым зарядом, но различающееся массой.

Целое число ближайшее к атомной массе, выраженной в а.е. м . называется массовым число м и обозначается буквой А . Обозначение химического эле-мента: А - массовое число, X - символ химического элемента, Z -зарядовое чис-ло - порядковый номер в таблице Менделеева ():

Бериллий ; Изотопы: , ", .

Радиус ядра:

где А - массовое число.

§2 Состав ядра

Ядро атома водорода называется протоном

m протона = 1,00783 а.е.м. , .

Схема атома водорода

В 1932 г. была открыта частица названная нейтроном, обладающая мас-сой близкой к массе протона (m нейтрона = 1,00867 а.е.м.) и не имеющая электрического заряда. Тогда же Д.Д. Иваненко сформулировал гипотезу о протонно - нейтроном строении ядра: ядро состоит из протонов и нейтронов и их сумма равна массовому числу А . 3арядовое число Z определяет число протонов в ядре, число нейтронов N =А - Z .

Элементарные частицы - протоны и нейтроны, входящие в состав ядра , получили общее название нуклонов. Нуклоны ядер находятся в состояниях , существенно отличающихся от их свободных состояний. Между нуклонами осуществляется особое я де р ное взаимодействие. Говорят, что нуклон может находиться в двух «зарядовых состояниях» - протонном с зарядом + е , и ней-тронном с зарядом 0.

§3 Энергия связи ядра. Дефект массы. Ядерные силы

Ядерные частицы - протоны и нейтроны - прочно удерживаются внутри ядра, поэтому между ними действуют очень большие силы притяжения, спо-собные противостоять огромным силам отталкивания между одноименно за-ряженными протонами. Эти особые силы, возникающие на малых расстояниях между нуклонам, называются ядерными силами. Ядерные силы не являются электростатическими (кулоновскими).

Изучение ядра показало, что действующие между нуклонами ядерные силы обладают следующими особенностями:

а) это силы короткодействующие - проявляющееся на расстояниях порядка 10 -15 м и резко убывающие даже при незначительном увеличения рас-стояния;

б) ядерные силы не зависят от того, имеет ли частица (нуклон) заряд - за-рядовая независимость ядерных сил. Ядерные силы, действующие между нейтроном и протоном, между двумя нейтронами, между двумя протонами равны. Протон и нейтрон по отношению к ядерным силам одинаковы.

Энергия связи является мерой устойчивости атомного ядра. Энергия связи ядра равна работе, которую нужно совершить для расщепления ядра на со-ставляющие его нуклоны без сообщения им кинетической энергии

М Я < Σ(m p + m n )

Мя - масса ядра

Измерение масс ядер показывает, что масса покой ядра меньше, чем сумма масс покоя составляющих его нуклонов.

Величина

служит мерой энергия связи и называется дефектом массы.

Уравнение Эйнштейна в специальной теории относительности связывает энергию и массу покоя частицы.

В общем случае энергия связи ядра может быть подсчитана по формуле

где Z - зарядовое число (число протонов в ядре);

А - массовое число (общее число нуклонов в ядре);

m p , , m n и М я - масса протона, нейтрона а ядра

Дефект массы (Δm ) равны.й 1 а.е. м. (а.е.м. - атомная единица массы) со-ответствует энергий связи (Е св), равной 1 а.е.э. (а.е.э. - атомная единица энер-гии) и равной 1а.е.м.·с 2 = 931 МэВ.

§ 4 Ядерные реакции

Изменения ядер при взаимодействии их с отдельными частицами и друг с другом принято называть ядерными реакциями.

Различают следующие, наиболее часто встречающиеся ядерные реакции.

  1. Реакция превращения . В этом случае налетевшая частица остается в ядре, но промежуточное ядро испускает какую-либо другую частицу, поэто-му ядро - продукт отличается от ядра-мишени.
  1. Реакция радиационного захвата . Налетевшая частица застревает в ядре, но возбужденное ядро испускает избыточную энергию, излучая γ- фотон (используется в работе ядерных реакторов)

Пример реакции захвата нейтронов кадмием

или фосфором


  1. Рассеяние . Промежуточное ядро испускает частицу, тождественную

с налетевшей, причем может быть:

Упругое рассеяние нейтронов углеродом (используется в реакторах для замедления нейтронов):

Неупругое рассеяние :

  1. Реакция деления . Это реакция, идущая всегда с выделением энергии. Она является основой для технического получения и использования ядерной энергии. При реакции деления возбуждение промежуточного составного ядра столь велико, что оно делится на два, примерно равных осколка, с выде-лением нескольких нейтронов.

Если энергия возбуждения невелика, то разделение ядра не происходит, а ядро, потеряв избыток энергии путем испускания γ - фотона или нейтрона, воз-вратится в нормальное состояние (рис. 1). Но если вносимая нейтроном энер-гия велика, то возбужденное ядро начинает деформироваться, в нем образуется перетяжка и в результате оно делится на два осколка, разлетающихся с ог-ромными скоростями, при этом испускается два нейтрона
(рис. 2).

Цепная реакция - саморазвивающаяся реакция деления. Для осуществ-ления её необходимо, чтобы из вторичных нейтронов, образующихся при од-ном акте деления, хотя бы один смог вызвать следующий акт деления: (так как некоторые нейтроны могут участвовать в реакциях захвата не вызывая деле-ния) . Количественно условие существования цепной реакции выражает коэффициент размножения

k < 1 - цепная реакция невозможна, k = 1 (m = m кр ) - цепная реакций с по-стоянным количеством нейтронов (в ядерном реакторе}, k > 1 (m > m кр ) - ядерные бомбы.

РАДИОАКТИВНОСТЬ

§1 Естественная радиоактивность

Радиоактивность представляет собой самопроизвольное превращение неустойчивых ядер одного элемента в ядра другого элемента. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существую-щих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных ре-акций.

Типы радиоактивности:

  1. α-распад.

Испускание ядрами некоторых химических элементов α-системы двух протонов и двух нейтронов, соединенных воедино (а-частица - ядро атома ге-лия )

α-распад присущ тяжелым ядрам с А > 200 и Z > 82. При движении в веще-стве α-частицы производят на своем пути сильную ионизацию атомов (иони-зация - отрыв электронов от атома), действуя на них своим электрическим полем. Расстояние, на которое пролетает α-частица в веществе до полной её остановки, называется пробегом частицы или проникающей способностью (обозначается R , [ R ] = м, см). . При нормальных условиях α- частица образует в воздухе 30000 пар ионов на 1 см пути. Удельной ионизаци-ей называется число пар ионов образующихся на 1 см длины пробега. α- частица оказывает сильное биологическое действие.

Правило смещения для α-распада:

2. β-распад.

а) электронный (β -): ядро испускает электрон и электронное антинейтрино

б) позитронный (β +):ядро испускает позитрон и нейтрино

Эта процессы происходят, путем превращения одного вида нуклона в яд-ре в другой: нейтрона в протон или протона в нейтрон.

Электронов в ядре нет, они образуются в результате взаимного превра-щения нуклонов.

Позитрон - частица, отличающаяся от электрона только знаком за-ряда (+е = 1,6·10 -19 Кл)

Из эксперимента следует, что при β - распаде изотопы теряют одинаковое количество энергии. Следовательно, на основании закона сохранения энергии В. Паули предсказал, что выбрасывается еще одна легкая частица, названная антинейтрино. Антинейтрино не имеет заряда и массы. Потери энергии β - частицами при прохождении их через вещество вызываются, главным обра-зом, процессами ионизации. Часть энергии теряется на рентгеновское излуче-ние при торможении β - частицы ядрами поглощающего вещества. Так как β - частицы обладают малой массой, единичным зарядом и очень большими скоростями, то их ионизирующая способность невелика, (в 100 раз меньше, чем у α - частиц), следовательно, проникающая способность (пробег) у β - частиц суще-ственно больше, чем у α - частиц.

R β воздуха =200 м, R β Pb ≈ 3 мм

β - - распад происходит у естественных и искусственных радиоактивных ядер. β + - только при искусственной радиоактивности.

Правило смещения для β - - распада :

в) К - захват (электронный захват) - ядро поглощает один из электронов, находящихся на оболочке К (реже L или М ) своего атома, в результате чего один из протонов превращается а нейтрон, испуская при этом нейтрино

Схема К - захвата:

Место е электронной оболочке, освобожденное захваченным электроном, заполняется электронами из вышележащих слоев, в результате чего возникают рентгеновские лучи.

  • γ-лучи.

Обычно все типы радиоактивности сопровождаются испусканием γ- лучей. γ-лучи - это электромагнитное излучение, обладающее длинами волн от одного до сотых долей ангстрем λ’=~ 1-0,01 Å=10 -10 -10 -12 м. Энергия γ-лучей достигает миллионов эВ.

W γ ~ MэB

1эВ=1,6·10 -19 Дж

Ядро, испытывающее радиоактивный распад, как правило, оказывается возбужденным, н его переход в основное состояние сопровождается испуска-нием γ - фотона. При этом энергия γ-фотона определяется условием

где Е 2 и E 1 -энергия ядра.

Е 2 - энергия в возбужденном состоянии;

Е 1 - энергия в основном состоянии.

Поглощение γ-лучей веществом обусловлено тремя основными процессами:

  • фотоэффектом (при hv < l MэB);
  • образованием пар электрон - позитрон;

или

  • рассеяние (эффект Комптона) -

Поглощение γ-лучей происходит по закону Бугера:

где μ- линейный коэффициент ослабления, зависящий от энергий γ - лучей и свойств среды;

І 0 - интенсивность падающего параллельного пучка;

I - интенсивность пучка после прохождения вещества толщиной х см.

γ-лучи - одно из наиболее проникающих излучений. Для наиболее жест-ких лучей (hν max ) толщина слоя половинного поглощения равна в свинце 1,6 см, в железе - 2,4 см, в алюминии - 12 см, в земле - 15 см.

§2 Основной закон радиоактивного распада.

Число распавшихся ядер dN пропорционально первоначальному числу ядер N и времени распада dt , dN ~ N dt . Основной закон радиоактивного распада в дифференциальной форме:

Коэффициент λ называется постоянной распада для данного вида ядер. Знак “-“ означает, что dN должно быть отрицательным, так как конечное чис-ло не распавшихся ядер меньше начального.

следовательно, λ характеризует долю ядер, распадающихся за единицу време-ни, т е. определяет скорость радиоактивного распада. λ не зависит от внешних условий, а определяется лишь внутренними свойствами ядер. [λ]=с -1 .

Основной закон радиоактивного распада в интегральной форме

где N 0 - первоначальное число радиоактивных ядер при t =0;

N - число не распавшихся ядер в момент времени t ;

λ - постоянная радиоактивного распада.

О скорости распада на практике судят используя не λ, а Т 1/2 - период по-лураспада - время, за которое распадается половина первоначального количества ядер. Связь Т 1/2 и λ

Т 1/2 U 238 = 4,5·10 6 лет, Т 1/2 Ra = 1590 лет, Т 1/2 Rn = 3,825 сут. Число распадов в единицу времени А = - dN / dt называется активностью данного радиоактивного вещества.

Из

следует,

[А] = 1Беккерель = 1распад/1с;

[А] = 1Ки = 1Кюри= 3,7·10 10 Бк.

Закон изменения активности

где А 0 =λ N 0 - начальная активность в момент времени t = 0;

А - активность в момент времени t .

Академик А. Ф. ИОФФЕ. "Наука и жизнь" № 1, 1934 г.

Статьей "Ядро атома" академика Абрама Федоровича Иоффе открывался первый номер журнала "Наука и жизнь", вновь созданного в 1934 году.

Э. Резерфорд.

Ф. У. Астон.

ВОЛНОВАЯ ПРИРОДА МАТЕРИИ

В начале XX века атомистическое строение материи перестало быть гипотезой, и атом сделался такой же реальностью, как реальны обычные для нac факты и явления.

Выяснилось, что атом есть очень сложное образование, в состав которого, несомненно, входят электрические заряды, а может быть, и только одни электрические заряды. Отсюда, естественно, возник вопрос о структуре атома.

Первая модель атома была построена по образцу Солнечной системы. Однако такое представление о структуре атома вскоре оказалось несостоятельным. И это естественно. Представление об атоме как о Солнечной системе было чисто механическим перенесением картины, связанной с астрономическими масштабами, в область атома, где масштабы - только стомиллионные доли сантиметра. Столь резкое количественное изменение не могло не повлечь за собой и очень существенного изменения качественных свойств тех же явлений. Это различие прежде всего сказалось в том, что атом, в отличие от Солнечной системы, должен быть построен по гораздо более жестким правилам, чем те законы, которые определяют орбиты планет Солнечной системы.

Возникло два затруднения. Во-первых, все атомы данного рода, данного элемента по своим физическим свойствам совершенно одинаковы, а следовательно, совершенно одинаковы должны быть орбиты электронов в этих атомах. Между тем законы механики, управляющие движением небесных тел, для этого не дают решительно никаких оснований. В зависимости от начальной скорости орбита планеты может быть, по этим законам, совершенно произвольна, планета может вращаться каждый раз с соответственной скоростью по любой орбите, на любых расстояниях от Солнца. Если бы такие же произвольные орбиты существовали в атомах, то атомы одинакового вещества не могли бы быть настолько совпадающими по своим свойствам, например, давать строго одинаковый спектр свечения. Это одно противоречие.

Другое - заключалось в том, что движение электрона вокруг атомного ядра, если к нему применить законы, хорошо нами изученные в большом масштабе лабораторных опытов или даже астрономических явлений, должно было бы сопровождаться непрерывным излучением энергии. Следовательно, энергия атома должна была бы непрерывно истощаться, и опять-таки атом не мог бы сохранить одинаковыми и неизменными свои свойства на протяжении столетий и тысячелетий, а весь мир и все атомы должны были бы испытывать непрерывное затухание, непрерывную потерю заключающейся в них энергии. Это тоже никак несовместимо с основными свойствами атомов.

Последнее затруднение ощущалось особенно остро. Казалось, оно завело всю науку в неразрешимый тупик.

Крупнейший физик Лоренц закончил нашу беседу по этому поводу так: "Я жалею, что не умер пять лет назад, когда этого противоречия еще не было. Тогда я умер бы в убеждении, что я раскрыл часть истины в явлениях природы".

В это же время, весной 1924 года, де-Бройль, молодой ученик Ланжевена, в своей диссертации выразил мысль, которая в дальнейшем своем развитии привела к новому синтезу.

Идея де-Бройля, потом довольно существенно измененная, но до сих пор в основном сохранившаяся, заключалась в том, что движение электрона, вращающегося вокруг ядра в атоме, не есть просто движение некоего шарика, как это представляли себе раньше, что это движение сопровождается некоторой волной, идущей вместе с движущимся электроном. Электрон - не шарик, а некоторая размытая в пространстве электрическая субстанция, движение которой представляет собой в то же время распространение волны.

Это представление, затем распространенное не только на электроны, но и на движение всякого тела - и электрона, и атома, и целой совокупности атомов, - утверждает, что всякое движение тела заключает в себе две стороны, из которых мы в отдельных случаях можем видеть особенно отчетливо одну сторону, тогда как другая заметно не проявляется. В одном случае мы видим как бы распространяющиеся волны и не замечаем движения частиц, в другом случае, наоборот, на первый план выступают сами движущиеся частицы, а волна ускользает от нашего наблюдения.

Но на самом деле всегда обе эти стороны имеются, и, в частности, в движении электронов имеется не только перемещение самих зарядов, но и распространение волны.

Нельзя сказать, что движения электронов по орбитам нет, а есть только пульсация, только волны, т. е. нечто другое. Нет, правильнее было бы сказать так: того движения электродов, которое мы уподобляли движению планет вокруг Солнца, мы вовсе не отрицаем, но самое это движение имеет характер пульсации , а не характер движения земного шара вокруг Солнца.

Я не стану здесь излагать строение атома, строение той электронной его оболочки, которая определяет все основные физические свойства - сцепление, упругость, капиллярность, химические свойства и т. п. Все это - результат движения электронной оболочки, или, как мы теперь скажем, пульсации атома.

ПРОБЛЕМА АТОМНОГО ЯДРА

Ядро играет в атоме самую существенную роль. Это - тот центр, вокруг которого вращаются все электроны и свойствами которого в конечном счете обусловливается все остальное.

Первое, что мы могли узнать о ядре, - это его заряд. Мы знаем, что в состав атома входит некоторое число отрицательно заряженных электронов, но атом в целом не обладает электрическим зарядом. Значит, где-то должны быть соответствующие положительные заряды. Эти положительные заряды сосредоточены в ядре. Ядро - положительно заряженная частица, вокруг которой пульсирует электронная атмосфера, окружающая ядро. Заряд ядра определяет собой и число электронов.

Электроны железа и меди, стекла и дерева совершенно одинаковы. Для атома никакой беды не составляет потерять несколько своих электронов или даже потерять все свои электроны. Пока остается положительно заряженное ядро, это ядро притянет к себе из других окружающих тел столько электронов, сколько ему нужно, и атом сохранится. Атом железа до тех пор останется железом, пока цело его ядро. Если он потеряет несколько электронов, то положительный заряд ядра окажется больше, чем совокупность оставшихся отрицательных зарядов, и весь атом в целом приобретет избыточный положительный заряд. Тогда мы его называем не атомом, а положительным ионом железа. В другом случае атом может, наоборот, привлечь к себе больше отрицательных электронов, чем в нем имеется положительных зарядов, - тогда он будет заряжен отрицательно, и мы называем его отрицательным ионом; это будет отрицательный ион того же элемента. Следовательно, индивидуальность элемента, все его свойства существуют и определяются ядром, зарядом этого ядра прежде всего.

Далее, - масса атома в подавляющей своей части определяется именно ядром, а не электрона ми, - масса электронов составляет меньше одной тысячной массы всего атома; больше чем 0,999 всей массы - это масса ядра. Это имеет тем большее значение, что массу мы считаем мерой того запаса энергии, которым обладает данное вещество; масса - такая же мера энергии , как эрг, киловатт-час или калория .

Сложность ядра обнаружилась в явлении радиоактивности, открытом, вскоре за рентгеновыми лучами, на грани нашего столетия. Известно, что радиоактивные элементы непрерывно излучают энергию в виде альфа-, бета- и гамма-лучей. Но такое непрерывное излучение энергии должно иметь какой-то источник. В 1902 г. Резерфорд показал, что единственным источником этой энергии должен быть атом, иначе сказать, ядерная энергия. Другая сторона радиоактивности заключается в том, что испускание этих лучей переводит один элемент, находящийся в одном месте периодической системы, в другой элемент с другими химическими свойствами. Иными словами, радиоактивные процессы осуществляют превращение элементов. Если верно, что ядром атома определяется его индивидуальность и что, пока ядро цело, до тех пор и атом остается атомом данного элемента, а не какого-нибудь другого, то переход одного элемента в другой означает изменение самого ядра атома.

Выбрасываемые радиоактивными веществами лучи дают первый подход, позволяющий составить себе некоторое общее представление о том, что заключено в ядре.

Альфа-лучи представляют собой ядра гелия, а гелий - второй элемент периодической системы. Можно думать поэтому, что в состав ядра входят ядра гелия. Но измерение скоростей, с которыми вылетают альфа-лучи, приводит сразу же к очень серьезному затруднению.

ТЕОРИЯ РАДИОАКТИВНОСТИ ГАМОВА

Ядро заряжено положительно. При приближении к нему всякая заряженная частица испытывает силу притяжения или отталкивания. В больших масштабах лабораторий взаимодействия электрических зарядов определяются законом Кулона: два заряда взаимодействуют друг с другом с силой, обратно пропорциональной квадрату расстояния между ними и прямо пропорциональной величине одного и другого зарядов. Изучая законы притяжения или отталкивания, которые испытывают частицы, приближаясь к ядру, Резерфорд установил, что вплоть до очень близких к ядру расстояний, порядка 10 -12 см, еще справедлив тот же закон Кулона. Если это так, то мы легко можем подсчитать, какую работу должно произвести ядро, отталкивая от себя положительный заряд, когда он выходит из ядра и выбрасывается наружу. Альфа-частицы и заряженные ядра гелия, вылетая из ядра, движутся под отталкивающим действием его заряда; и вот соответствующий подсчет дает, что под действием одного только отталкивания альфа-частицы должны были накопить кинетическую энергию, соответствующую, по крайней мере, 10 или 20 млн. электронвольт, т. е. энергию, которая получается при прохождении зарядом, равным заряду электрона, разности потенциалов в 20 млн. вольт . А на самом деле, вылетая из атома, они выходят с энергией, гораздо меньшей, всего в 1-5 млн. электронвольт. А ведь, кроме того,

естественно было ожидать, что и ядро, выбрасывая альфа-частицу, еще что-то дает ей в придачу. В момент выбрасывания в ядре происходит что-то вроде взрыва, и самый этот взрыв сообщает какую-то энергию; к этому прибавляется работа сил отталкивания, а оказывается, что сумма этих энергий меньше того, что должно дать одно отталкивание. Это противоречие снимается, как только мы откажемся от механического перенесения в эту область взглядов, выработанных на опыте изучения больших тел, где мы не принимаем во внимание волнового характера движения. Г. А. Гамов первый дал правильное толкование этому противоречию и создал волновую теорию ядра и радиоактивных процессов.

Известно, что на достаточно больших расстояниях (больше 10 -12 см) ядро отталкивает от себя положительный заряд. С другой стороны, несомненно, что внутри самого ядра, в котором находится много положительных зарядов, они почему-то не отталкиваются. Самое существование ядра показывает, что положительные заряды внутри ядра взаимно притягивают друг друга, а вне ядра - от него отталкиваются.

Как же можно описать энергетические условия в самом ядре и вокруг него? Гамов создал следующее представление. Будем изображать на диаграмме (рис. 5) величину энергии положительного заряда в данном месте расстоянием от горизонтальной прямой А .

По мере приближения к ядру энергия заряда будет возрастать, потому что будет совершаться работа против силы отталкивания. Внутри ядра, наоборот, энергия должна снова уменьшиться, потому что здесь существует не взаимное отталкивание, а взаимное притяжение. На границах ядра происходит резкое спадание величины энергии. Наш рисунок изображен на плоскости; на самом деле нужно, конечно, представить себе его в пространстве с таким же распределением энергии и по всем другим направлениям. Тогда мы получаем, что вокруг ядра имеется шарообразный слой с высокой энергией, как бы некоторый энергетический барьер, защищающий ядро от проникновения положительных зарядов, так называемый "барьер Гамова".

Если стоять на точке зрения привычных взглядов на движение тела и забыть о волновой его природе, то нужно ожидать, что в ядро может пробраться только такой положительный заряд, энергия которого не меньше высоты барьера. Наоборот, для того, чтобы выйти из ядра, заряду нужно сначала достигнуть вершины барьера, после чего его кинетическая энергия начнет возрастать по мере удаления от ядра. Если на вершине барьера энергия была равна нулю, то при удалении из атома она и получит те самые 20 млн. электронвольт, которые на самом деле никогда не наблюдаются. Новое понимание ядра, которое внес Гамов, заключается в следующем. Движение частицы нужно рассматривать как волновое. Следовательно, на этом движении сказывается энергия не только в занимаемой частицей точке, но и во всей размытой волне частицы, охватывающей довольно значительное пространство. Исходя из представлений волновой механики, мы можем утверждать, что, если даже энергия в данной точке не достигла того предела, который соответствует вершине барьера, частица может оказаться по другую его сторону, где ее уже не втягивают в ядро действующие там силы притяжения.

Нечто аналогичное представляет следующий опыт. Представьте себе, что за стеной комнаты находится бочка с водой. От этой бочки проведена труба, которая проходит высоко наверху через отверстие, в стене и подает воду; внизу вода выливается. Это - хорошо известное устройство, называемое сифоном. Если бочка с той стороны поставлена выше, чем конец трубы, то через нее будет непрерывно вытекать вода со скоростью, определяемой разностью уровня воды в бочке и конца трубы. Ничего удивительного здесь нет. Но если бы вы не знали о существовании бочки по ту сторону стены и видели только трубу, по которой течет вода с большой высоты, то для вас этот факт казался бы непримиримым противоречием. Вода течет с большой высоты и в то же время не накапливает той энергии, которая соответствует высоте трубы. Однако объяснение в данном случае очевидно.

Аналогичное явление мы имеем в ядре. Заряд из своего нормального положения А поднимается в состояние большей энергии В , но вовсе не достигает вершины барьера С (рис. 6).

Из состояния В альфа-частица, проходя сквозь барьер, начинает отталкиваться от ядра не с самой вершины С , а с меньшей высоты энергии B 1 . Поэтому при выходе наружу накопленная частицей энергия будет зависеть не от высоты С , а от меньшей высоты, равной B 1 (рис. 7).

Это качественное рассуждение можно облечь и в количественную форму и дать закон, определяю щий вероятность прохождения барьера альфа-частицей в зависимости от той энергии В , которой она обладает в ядре, а следовательно, и от той энергии, которую она получит при выходе из атома.

При помощи ряда опытов был установлен очень простой закон, связывавший числа выбрасываемых радиоактивными веществами альфа-частиц с их энергией или скоростью. Но смысл этого закона был совершенно непонятен.

Первый успех Гамова заключался в том, что из его теории совершенно точно и непринужденно вытекал этот количественный закон испускания альфа-частиц. Сейчас "энергетический барьер Гамова" и волновое его толкование являются основой всех наших представлений о ядре.

Свойства альфа-лучей качественно и количественно хорошо объясняются теорией Гамова, но известно, что радиоактивные вещества испускают и бета-лучи - потоки быстрых электронов. Испускания электронов модель не в состоянии объяснить. Это - одно из самых серьезных противоречий теории атомного ядра, которое до самого последнего времени осталось неразрешенным, но решение которого теперь, по-видимому, намечается .

СТРОЕНИЕ ЯДРА

Перейдем теперь к рассмотрению того, что мы знаем о строении ядра.

Больше 100 лет назад Проутом была высказана мысль, что, может быть, элементы периодической системы вовсе не являются отдельными, ничем между собой не связанными формами материи, а представляют собой только разные комбинации атома водорода. Если бы это было так, то можно было бы ожидать, что не только заряды всех ядер будут представлять собою целые кратные заряда водорода, но и массы всех ядер будут выражаться целыми кратными массы ядра водорода, т. е. все атомные веса должны были бы выражаться целыми числами. И действительно, если посмотреть на таблицу атомных весов, то можно увидеть большое число целых чисел . Например, углерод - ровно 12, азот ровно 14, кислород - ровно 16, фтор - ровно 19. Это, конечно, не случайность. Но есть все-таки атомные веса, далекие от целых чисел. Например, неон имеет атомный вес 20,2, хлор - 35,46. Поэтому гипотеза Проута осталась частичной догадкой и не могла сделаться теорией строения атома. Изучая поведение заряженных ионов, особенно легко можно изучать свойства ядра атома, воздействуя на них, например, электрическим и магнитным полем.

Основанный на этом метод, доведенный до чрезвычайно большой точности Астоном, позволил установить, что все элементы, атомные веса которых не выражались целыми числами, на самом деле представляют собой не однородное вещество, а смесь двух или нескольких - 3, 4, 9 - разных видов атомов. Так, например, атомный вес хлора, равный 35,46, объясняется тем, что на самом деле имеется несколько сортов хлорных атомов. Существуют атомы хлора с атомным весом 35 и 37, и эти два вида хлора смешаны между собой в такой пропорции, что их средний атомный вес получается 35,46. Оказалось, что не только в одном этом частном случае, но и во всех без исключения случаях, где атомные веса не выражаются целыми числами, мы имеем смесь изотопов, т. е. атомов с одинаковым зарядом, следовательно, представляющих собой один и тот же элемент, но с различными массами. Каждый же отдельный сорт атомов всегда имеет целый атомный вес.

Таким образом, гипотеза Проута получила сразу значительное подкрепление, и вопрос можно было бы считать решенным, если бы не одно исключение, а именно, сам водород. Дело в том, что наша система атомных весов построена не на водороде, принятом за единицу, а на атомном весе кислорода, который условно принят равным 16. По отношению к этому весу атомные веса выражаются почти точными целыми числами. Но сам водород в этой системе имеет атомный вес не единицу, а несколько больше, именно 1,0078. Это число отличается от единицы довольно значительно- на 3 / 4 %, что далеко превосходит все возможные ошибки в определении атомного веса.

Оказалось, что и у кислорода имеется 3 изотопа: кроме преобладающего, с атомным весом 16, другой - с атомным весом 17 и третий - с атомным весом 18 . Если относить все атомные веса к изотопу 16, то атомный вес водорода все-таки окажется немного больше единицы. Далее был найден второй изотоп водорода - водород с атомным весом 2 - дейтерий, как его назвали открывшие его американцы, или диплоген, как его называют англичане. Этого дейтерия примешано всего примерно 1/6000 часть, и поэтому на атомном весе водорода присутствие этой примеси сказывается очень мало.

Следующий за водородом гелий имеет атомный вес 4,002. Если бы он был составлен из 4 водородов, то атомный вес его должен был бы быть, очевидно, 4,031. Следовательно, в этом случае мы имеем некоторую потерю в атомном весе, а именно: 4,031 - 4,002 = 0,029. Возможно ли это? Пока мы не считали массу некоторой мерой материи, конечно, это было невозможно: это значило бы, что часть материи исчезла.

Но теория относительности установила с несомненностью, что масса не есть мера количества материи , а мера той энергии, которой эта материя обладает. Материя измеряется не массой, а количеством зарядов, составляющих эту материю. Эти заряды могут иметь большую или меньшую энергию. Когда одинаковые заряды сближаются - энергия увеличивается, когда они удаляются - энергия уменьшается. Но это, конечно, не значит, что изменилась материя.

Когда мы говорим, что при образовании гелия из 4 водородов исчезло 0,029 атомного веса, то это значит, что исчезла соответствующая этой величине энергия. Мы знаем, что каждый грамм вещества обладает энергией, равной 9 . 10 20 эрг. При образовании 4 г гелия теряется энергия, равная 0,029 . 9 . 10 20 эргам. За счет этого уменьшения энергии 4 ядра водорода соединятся в новое ядро. Лишняя энергия выделится в окружающее пространство, и останется соединение с несколько меньшей энергией и массой. Таким образом, если атомные веса измеряются не точно, целыми числами 4 или 1, а 4,002 и 1,0078, то именно эти тысячные доли приобретают особенное значение, потому что они определяют энергию, выделяющуюся при образовании ядра.

Чем больше выделяется энергии при образовании ядра, т. е. чем больше при этом потеря в атомном весе, тем прочнее ядро. В частности, ядро гелия очень прочно, потому что при его образовании выделяется энергия, соответствующая потере в атомном весе - 0,029. Это очень большая энергия. Чтобы судить о ней, лучше всего запомнить такое простое соотношение: одна тысячная атомного веса соответствует примерно 1 млн электронвольт. Так что 0,029 это примерно 29 млн. электронвольт. Для того чтобы разрушить ядро гелия, чтобы разложить его обратно на 4 водорода, нужна колоссальная энергия. Ядро такой энергии не получает, поэтому ядро гелия чрезвычайно устойчиво, и поэтому-то именно из радиоактивных ядер выделяются не ядра водорода, а целые ядра гелия, альфа-частицы. Эти соображения приводят нас к новой оценке атомной энергии. Мы уже знаем, что в ядре сосредоточена почти вся энергия атома, и притом энергия громадная. 1 г вещества имеет, если перевести на более наглядный язык, столько энергии, сколько можно получить от сжигания 10 поездов по 100 вагонов нефти. Следовательно, ядро - совершенно исключительный источник энергии. Сравните 1 г с 10 поездами - таково соотношение концентрации энергии в ядре по сравнению с энергией, которой мы пользуемся в нашей технике.

Однако, если вдуматься в те факты, которые мы сейчас рассматриваем, то можно, наоборот, придти к совершенно противоположному взгляду на ядро. Ядро с этой точки зрения является не источником энергии, а ее кладбищем: ядро - это остаток после выделения громадного количества энергии, и в нем мы имеем самое низкое состояние энергия.

Следовательно, если мы можем говорить о возможности использования энергии ядра, то только в том смысле, что, может быть, не все ядра дошли до предельно низкой энергии: ведь и водород и гелий - оба существуют в природе, и, следовательно, не весь водород соединился в гелий, хотя гелий и обладает меньшей энергией. Если бы мы могли имеющийся водород сплотить в гелий, то получили бы известное количество энергии. Это не 10 поездов с нефтью, но все-таки это будет примерно 10 вагонов с нефтью. И это не так уж плохо, если бы можно было из 1 г вещества получить столько энергии, сколько от сжигания 10 вагонов нефти.

Таковы возможные запасы энергии при перестройке ядер. Но возможность, конечно, еще далеко не реальность .

Каким же образом можно реализовать эти возможности? Для того, чтобы оценить их, перейдем к рассмотрению состава атомного ядра.

Мы можем теперь сказать, что во всех ядрах имеются положительные ядра водорода, которые называются протонами, обладают единицей атомного веса (точнее 1,0078) и единичным положительным зарядом. Но ядро не может состоять из одних протонов. Возьмем, например, самый тяжелый элемент, занимающий 92-е место в периодической таблице, - уран с атомным весом 238. Если предположить, что все эти 238 единиц составлены из протонов, то уран имел бы 238 зарядов, между тем он имеет всего 92. Следовательно, либо там не все частицы заряжены, либо там кроме 238 протонов имеются 146 отрицательных электронов. Тогда все благополучно: атомный вес был бы 238, положительных зарядов 238 и отрицательных 146, следовательно, суммарный заряд 92. Но мы уже установили, что предположение о наличии в ядре электронов несовместимо с нашими представлениями: ни по размерам, ни по магнитным свойствам электронов в ядро поместить нельзя. Оставалось какое-то противоречие.

ОТКРЫТИЕ НЕЙТРОНА

Это противоречие было уничтожено новым опытным фактом, который примерно два года тому назад был открыт Иреной Кюри и мужем ее Жолио (Ирена Кюри - дочь Марии Кюри, открывшей радий) . Ирена Кюри и Жолио открыли, что при бомбардировке бериллия (четвертого элемента периодической системы) альфа-частицами бериллий испускает какие-то странные лучи, проникающие через громадные толщи вещества. Казалось бы, paз они так легко проникают сквозь вещества, они не должны вызывать там сколько-нибудь значительных действий, иначе их энергия истощилась бы и они не проникали бы сквозь вещество. С другой стороны, оказывается, что эти лучи, столкнувшись с ядром какого- нибудь атома, отбрасывают его с громадной силой, как бы ударом тяжелой частицы. Так что, с одной стороны, нужно думать, что эти лучи - тяжелые ядра, а с другой стороны, они способны проходить громадные толщи, не оказывая никакого влияния.

Разрешение этого противоречия найдено было в том, что эта частица не заряжена. Если у частицы нет электрического заряда, то тогда на нее ничто не будет действовать, и сама она ни на что не будет действовать. Только тогда, когда она при своем движении наскочит где-нибудь на ядро, она его отбрасывает.

Таким образом, появились новые незаряженные частицы - нейтроны. Оказалось, что масса этой частицы примерно такая же, как масса частицы водорода - 1,0065 (на одну тысячную меньше протона, стало быть, энергия ее примерно на 1 млн электронвольт меньше). Эта частица похожа на протон, но только лишена положительного заряда, она нейтральна, ее назвали нейтроном.

Как только выяснилось существование нейтронов, было предложено совершенно иное представление о строении ядра. Оно было впервые высказано Д. Д. Иваненко, а затем развито, в особенности Гайзенбергом, получившим Нобелевскую премию прошлого года. В ядре могут находиться протоны и нейтроны. Можно было предположить, что ядро и составлено только из протонов и нейтронов. Тогда совсем по-другому, но совсем просто представляется все построение периодической системы. Как, например, надо себе представить уран? Его атомный вес 238, т. е. там 238 частичек. Но часть из них протоны, часть нейтроны. Каждый протон имеет положительный заряд, нейтроны совсем не имеют заряда. Если заряд урана - 92, то это значит, что 92 - протона, а все остальное - нейтроны. Это представление уже сейчас привело к ряду весьма замечательных успехов, сразу разъяснило целый ряд свойств периодической системы, которые раньше представлялись совершенно загадочными. Когда протонов и нейтронов немного, то, по современным представлениям волновой механики, нужно ожидать, что число протонов и нейтронов в ядре одинаково. Зарядом обладает только протон, и число протонов дает атомный номер. А атомный вес элемента - это сумма весов протонов и нейтронов, потому что и те и другие имеют по единице атомного веса. На этом основании можно сказать, что атомный номер - это половина атомного веса.

Теперь остается все-таки одно затруднение, одно противоречие. Это - противоречие, создаваемое бета-частицами.

ОТКРЫТИЕ ПОЗИТРОНА

Мы пришли к заключению, что в ядре нет ничего кроме положительно заряженного протона. А как же тогда выбрасываются из ядра отрицательные электроны, если там вообще никаких отрицательных зарядов нет? Как видите, мы попали в трудное положение.

Из него нас выводит опять-таки новый экспериментальный факт, новое открытие. Это открытие было сделано, пожалуй впервые, Д. В. Скобельцыным, который, давно уже изучая космические лучи, нашел, что среди зарядов, которые выбрасывают космические лучи, есть и положительные легкие частицы. Но это открытие настолько противоречило всему тому, что твердо было установлено, что Скобельцын сначала не придал своим наблюдениям такого толкования.

Следующим, кто открыл это явление, был американский физик Андерсен в Пасадене (Калифорния), а после него в Англии, в лаборатории Резерфорда, - Блэккет. Это - положительные электроны или, как их не очень удачно назвали, - позитроны. Что действительно это положительные электроны - можно проще всего видеть по их поведению в магнитном поле. В магнитном поле электроны отклоняются в одну сторону, а позитроны - в другую, и направление их отклонения определяет собою их знак.

Вначале позитроны наблюдались только при прохождении космических лучей. Совсем недавно те же Ирена Кюри и Жолио открыли новое замечательное явление. Оказалось, что существует новый тип радиоактивности, что ядра алюминия, бора, магния, сами по себе не радиоактивные, будучи бомбардированы альфа-лучами, становятся радиоактивными. В течение от 2 до 14 минут они продолжают сами собой испускать частицы, и эти частицы уже не альфа- и бета-лучи, а позитроны.

Теория позитронов была создана гораздо раньше, чем был найден сам позитрон. Дирак поставил себе задачу придать уравнениям волновой механики такую форму, чтобы они удовлетворяли и теории относительности.

Эти уравнения Дирака, однако, привели к очень странному следствию. Масса в них входит симметрично, т. е. при изменении знака массы на противоположный уравнения не изменяются. Эта симметрия уравнений относительно массы позволила Дираку предсказать возможность существования положительных электронов.

В то время никто положительных электронов не наблюдал, и существовала твердая уверенность, что положительных электронов нет (можно судить об этом по той осторожности, с которой подошли к данному вопросу и Скобельцын и Андерсен), поэтому теория Дирака была отвергнута. Спустя два года положительные электроны были на самом деле найдены, и, естественно, вспомнили о теории Дирака, предсказавшей их появление.

"МАТЕРИАЛИЗАЦИЯ" И "АННИГИЛЯЦИЯ"

Эта теория связана с целым рядом неосновательных толкований, которые обрастают ее со всех сторон. Мне хотелось бы здесь разобрать названный так по инициативе мадам Кюри процесс материализации - появление при прохождении гамма-лучей сквозь материю одновременно пары из положительного и отрицательного электрона . Этот опытный факт толкуют как превращение электромагнитной энергии в две частицы материи, которых раньше не существовало. Этот факт, следовательно, истолковывается как создание и исчезновение материи под влиянием тех иных лучей.

Но если ближе присмотреться к тому, что мы в действительности наблюдаем, то легко видеть, что такое толкование появления пар не имеет никаких оснований. В частности, в работе Скобельцына прекрасно видно, что появление пары зарядов под воздействием гамма-лучей происходит вовсе не в пустом пространстве, появление пар наблюдается всегда только в атомах. Следовательно, здесь мы имеем дело не с материализацией энергии, не с появлением какой-то новой материи, а только с разделением зарядов внутри той материи, которая уже существует в атоме. Где она находилась? Надо думать, что процесс расщепления положительного и отрицательного заряда происходит недалеко от ядра, внутри атома, но не внутри ядра (на сравнительно не очень большом расстоянии 10 -10 -10 -11 см, тогда как радиус ядра 10 -12 -10 -13 см).

Совершенно то же можно сказать и об обратном процессе "аннигиляции материи" - соединения отрицательного и положительного электрона с выделением одного миллиона электронвольт энергии в виде двух квантов электромагнитных гамма-лучей. И этот процесс происходит всегда в атоме, по-видимому вблизи его ядра.

Здесь мы подходим к возможности разрешения отмеченного уже нами противоречия, к которому приводит испускание бета-лучей отрицательных электронов ядром, которое, как мы думаем, электронов не содержит.

Очевидно, бета-частицы вылетают не из ядра, а благодаря ядру; благодаря выделению энергии внутри ядра около него происходит процесс расщепления на положительный и отрицательный заряды, причем отрицательный заряд выбрасывается, а положительный втягивается в ядро и связывается с нейтроном, образуя положительный протон. Таково предположение, которое высказывалось в последнее время.

Вот что мы знаем о составе атомного ядра.

ЗАКЛЮЧЕНИЕ

В заключение скажем несколько слов о дальнейших перспективах.

Если при изучении атомов мы дошли до некоторых границ, за которыми количественные изменения перешли в новые качественные свойства, то на границах атомного ядра перестают действовать и те законы волновой механики, которые мы обнаружили в атомной оболочке; в ядре начинают нащупываться очень еще неясные контуры новой, еще более обобщающей теории, по отношению к которой волновая механика представляет собой только одну сторону явления, другая сторона которого начинает сейчас открываться - и начинает, как всегда, с противоречий.

Работы над атомным ядром имеют и другую очень любопытную сторону, тесно переплетающу юся с развитием техники. Ядро очень хорошо защищено барьером Гамова от внешних воздействий. Если, не ограничиваясь только наблюдением распада ядер в радиоактивных процессах, мы захотели бы извне прорваться в ядро, перестроить его, то для этого потребовалось бы чрезвычай но мощное воздействие.

Задача о ядре самым настойчивым образом требует дальнейшего развития техники, перехода от тех напряжений, которые уже освоены высоковольтной техникой, от напряжений в несколько сотен тысяч вольт, к миллионам вольт. Создается новый этап и в технике. Это работа над созданием новых источников напряжения, в миллионы вольт, ведется сейчас во всех странах - и за границей и у нас, в частности в Харьковской лаборатории, которая первая начала эту работу, и в Ленинградском физико-техническом институте, и в других местах.

Проблема ядра - одна из самых актуальных проблем нашего времени в физике; над ней нужно с чрезвычайной интенсивностью и настойчивостью работать, и в этой работе необходимо обладать большой смелостью мысли. В своем изложении я указал несколько случаев, когда, переходя к новым масштабам, мы убеждались, что наши логические привычки, все наши представления, построенные на ограниченном опыте, не годятся для новых явлений и новых масштабов. Нужно преодолеть этот свойственный каждому из нас консерватизм здравого смысла. Здравый смысл - это концентрированный опыт прошлого; нельзя ожидать, что этот опыт полностью охватит и будущее. В области ядра больше, чем в какой-нибудь другой, приходится все время иметь в виду возможность новых качественных свойств и не бояться их. Мне кажется, что именно здесь должна сказаться мощь диалектического метода, лишенного этого консерватизма метода, предсказавшего и весь ход развития современной физики. Я, конечно, понимаю здесь под диалектическим методом не совокупность фраз, взятых из Энгельса. Не его слова, а их смысл нужно перенести в нашу работу; только один диалектический метод может нас продвинуть вперед в такой совершенно новой и передовой области, как проблема ядра.

Состав и характеристики атомного ядра

Атом – наименьшая часть химического элемента, способная к самостоятельному существованию и являющаяся носителем его свойств. Атом представляет собой электрически нейтральную систему, состоящую из положительно заряженного ядра и отрицательно заряженных электронов. Диаметр атома порядка 10 -10 м, диаметр ядра – 10-15 – 10 -14 м. Ядро атома имеет сложное строение. В 1932 г. В.Гейзенберг и Д.Иваненко предложили нуклонную модель строения ядра, согласно которой ядро атома состоит из протонов и нейтронов.

Протон [от греч. protos – первый] (символ ) – стабильная элементарная частица, ядро атома водорода. Время жизни протона > 10 31 лет. Масса 1,6726∙10 -27 кг 938,3 МэВ. Электрический заряд протона положительный: 1,6∙10 -19 Кл. Спин протона равен ½, поэтому он подчиняется статистике Ферми-Дирака. Число протонов в ядре – зарядовое число, определяет общий заряд ядра и порядковый номер элемента в таблице Менделеева. Заряд ядра определят число электронов в атоме, конфигурацию их электронных оболочек, величину и характер внутриатомного электрического поля. Число электронов в нейтральном атоме равно числу протонов в ядре, а их общий отрицательный заряд равен .

Характеристики протона, нейтрона, электрона
Характеристика Протон Нейтрон Электрон
Масса, МэВ 938.28 939.57 0.511
Электрический заряд (в единицах заряда электрона) +1 -1
Внутренний момент количества движения (в единицах ћ) 1/2 1/2 1/2
Четность +1 +1 +1
Статистика Ферми-Дирака
Магнитный момент (в единицах ядерного магнетона)
+2.79 -1.91
(в единицах магнетона Бора) 1.001
Время жизни >10 25 лет 887+ 2 с >4.3·10 23 лет
Тип распада pe - ν e

Нейтрон (символ n ) [от лат neuter – ни тот, ни другой] – элементарная частица с нулевым электрическим зарядом, массой покоя 1,6749∙10 -27 кг (939,565 МэВ). Наряду с протоном под общим названием нуклон входит в состав атомных ядер. Имеет спин ½, подчиняется статистике Ферми-Дирака (является фермионом). Открыт в 1932 г. Дж. Чедвиком. В свободном состоянии нейтрон нестабилен, самопроизвольно распадается, превращаясь в протон с испусканием электрона и антинейтрино: Время жизни нейтрона – 896 с.

Протон и нейтрон считаются двумя состояниями нуклона. Масса атома определяется в основном массой его ядра. Массовое число зависит от общего числа протонов и нейтронов в ядре: (ядро содержит протонов и нейтронов). Массу ядра атома выражают в атомных единицах массы. Атомная единица массы (а.е.м.) – единица массы, равная 1/12 массы изотопа углерода ; применяется в атомной и ядерной физике для выражения масс элементарных частиц, атомов, молекул. 1 а.е.м. = 1,6605655 · 10 -27 кг.

Для обозначения ядер атомов принята символика

где – символ химического элемента, – зарядовое число, – массовое число.

Изотопами называют ядра, имеющие одинаковый заряд , но различные массовые числа (т.е. различаются числом нейтронов). Например,

Ядра с одинаковыми , но разными называются изобарами . Например,

Ядра с одинаковым числом нейтронов, но разным числом протонов называются изотонами. Например,

Ядра с одинаковым числом протонов и нейтронов, но разными периодами полураспада называются изомерами. Например, существуют два вида ядер брома с периодами полураспада 4,4 часа и 18 мин.

В настоящее время известно более 2300 ядер, примерно 300 из них устойчивы, остальные нестабильны. В природе встречаются элементы с атомными номерами от 1 до 92 (кроме технеция и прометия ). Элементы с 93 получены искусственным путем, называются трансурановыми.

На рисунке показана N-Z диаграмма атомных ядер. Черными точками показаны стабильные ядра. Область расположения стабильных ядер обычно называют долиной стабильности. С левой стороны от стабильных ядер находятся ядра, перегруженные протонами (протоноизбыточные ядра), справа – ядра, перегруженные нейтронами (нейтроноизбыточные ядра). Протоноизбыточные ядра являются радиоактивными и превращаются в стабильные в основном в результате β + -распадов, протон, входящий в состав ядра при этом превращается в нейтрон. Нейтроноизбыточные ядра также являются радиоактивными и превращаются в стабильные в результате β - -распадов, с превращением нейтрона ядра в протон.


N-Z диаграмма атомных ядер

Самыми тяжелыми стабильными изотопами являются изотопы свинца (Z = 82) и висмута (Z = 83). Тяжелые ядра наряду с процессами β + и β - - распада подвержены также -распаду и спонтанному делению, которые становятcя их основными каналами распада. Пунктирная линия очерчивает область возможного существования атомных ядер. Линия B p = 0 (B p - энергия отделения протона) ограничивает область существования атомных ядер слева (proton drip-line). Линия B n = 0 (B n - энергия отделения нейтрона) - справа (neutron drip-line). Вне этих границ атомные ядра существовать не могут, так как они распадаются за характерное ядерное время (~ 10 -23 c) с испусканием одного или двух нуклонов.

Плотность ядерного вещества 10 17 кг/м 3 .

Спины нуклонов образуют результирующий спин ядра, суммируясь по квантовым законам сложения моментов. При нечетном числе нуклонов спин ядра будет полуцелым, при четном числе нуклонов – нулем или целым числом. Спины большинства нуклонов в ядре взаимно компенсируют друг друга, располагаясь антипараллельно. Поэтому спины ядер не превышают нескольких единиц. У ядер с четным числом протонов и четным числом нейтронов (четно-четные ядра) спин равен нулю.

Делимо ли атомное ядро? И если да, то из каких частиц оно состоит? На этот вопрос пытались ответить многие физики.

В 1909 г. британский физик Эрнест Резерфорд вместе с немецким физиком Гансом Гейгером и физиком из Новой Зеландии Эрнстом Марсденом провёл свой известный эксперимент по рассеянию α-частиц, результатом которого стал вывод о том, что атом вовсе не неделимая частица. Он состоит из положительно заряженного ядра и вращающихся вокруг него электронов. Причём, несмотря на то, что размер ядра примерно в 10 000 раз меньше размера самого атома, в нём сосредоточено 99,9% массы атома.

Но что из себя представляет ядро атома? Какие частицы входят в его состав? Это сейчас мы знаем, что ядро любого элемента состоит из протонов и нейтронов , общее название которых нуклоны . А в начале ХХ века после появления планетарной, или ядерной, модели атома, это было загадкой для многих учёных. Выдвигались разные гипотезы и предлагались разные модели. Но правильный ответ на этот вопрос снова дал Резерфорд.

Открытие протона

Опыт Резерфорда

Ядро атома водорода – это атом водорода, из которого удалили его единственный электрон.

К 1913 г. были вычислены масса и заряд ядра атома водорода. Кроме того, стало известно, что масса атома любого химического элемента всегда делится без остатка на массу атома водорода. Этот факт навёл Резерфорда на мысль, что в любое ядро входят ядра атомов водорода. И ему удалось доказать это экспериментально в 1919 г.

В своём опыте Резерфорд поместил источник α-частиц в камеру, в которой был создан вакуум. Толщина фольги, закрывавшей окно камеры, была такой, что α-частицы не могли выходить наружу. За окном камеры располагался экран, на который нанесли покрытие из сернистого цинка.

Когда камеру начинали заполнять азотом, на экране фиксировались световые вспышки. Это означало, что под воздействием α-частиц из азота выбивались какие-то новые частицы, без труда проникавшие через фольгу, непроходимую для α-частиц. Оказалось, что неизвестные частицы имеют положительный заряд, равный по величине заряду электрона, а их масса равна массе ядра атома водорода. Эти частицы Резерфорд назвал протонами .

Но вскоре стало понятно, что ядра атомов состоят не только из протонов. Ведь если бы это было так, то масса атома равнялась бы сумме масс протонов в ядре, а отношение заряда ядра к массе было бы величиной постоянной. На самом деле, это справедливо только для простейшего атома водорода. В атомах других элементов всё по-другому. К примеру, в ядре атома бериллия сума масс протонов равна 4 единицам, а масса самого ядра равна 9 единицам. Значит, в этом ядре существуют и другие частицы, обладающие массой в 5 единиц, но не имеющие заряда.

Открытие нейтрона

В 1930 г. немецкий физик Вальтер Боте Боте и Ханс Беккер во время эксперимента обнаружили, что излучение, возникающее при бомбардировке атомов бериллия α-частицами, имеет огромную проникающую способность. Спустя 2 года английский физик Джеймс Чедвик, ученик Резерфорда, выяснил, что даже свинцовая пластинка толщиной 20 см, помещённая на пути этого неизвестного излучения, не ослабляет и не усиливает его. Оказалось, что и электромагнитное поле не оказывает на излучаемые частицы никакого воздействия. Это означало, что они не имеют заряда. Так была открыта ещё одна частица, входящая в состав ядра. Её назвали нейтроном . Масса нейтрона оказалась равной массе протона.

Протонно-нейтронная теория ядра

После экспериментального открытия нейтрона российский ученый Д. Д. Иваненко и немецкий физик В. Гейзенберг, независимо друг от друга предложили протонно-нейтронную теорию ядра, которая дала научное обоснование состава ядра. Согласно этой теории ядро любого химического элемента состоит из протонов и нейтронов. Их общее название - нуклоны.

Общее число нуклонов в ядре обозначают буквой A . Если число протонов в ядре обозначить буквой Z , а число нейтронов буквой N , то получим выражение:

A = Z + N

Это уравнение называется уравнением Иваненко-Гейзенберга .

Так как заряд ядра атома равен количеству протонов в нём, то Z называют также зарядовым числом . Зарядовое число, или атомный номер, совпадает с его порядковым номером в периодической системе элементов Менделеева.

В природе существуют элементы, химические свойства которых абсолютно одинаковы, а массовые числа разные. Такие элементы называются изотопами . У изотопов одинаковое количество протонов и разное количество нейтронов.

К примеру, у водорода три изотопа. Все они имеют порядковый номер, равный 1, а число нейтронов в ядре у них разное. Так, у самого простого изотопа водорода, протия, массовое число 1, в ядре 1 протон и ни одного нейтрона. Это простейший химический элемент.

А́томное ядро́ - центральная часть атома, в которой сосредоточена основная его масса (более 99,9 %). Ядро заряжено положительно, заряд ядра определяет химический элемент, к которому относят атом.

Атомное ядро состоит из нуклонов - положительно заряженных протонов и нейтральных нейтронов, которые связаны между собой при помощи сильного взаимодействия.

Атомное ядро, рассматриваемое как класс частиц с определённым числом протонов и нейтронов, принято называть нуклидом .

Количество протонов в ядре называется его зарядовым числом - это число равно порядковому номеру элемента, к которому относится атом, в таблице (Периодической системе элементов) Менделеева. Количество протонов в ядре определяет структуру электронной оболочки нейтрального атома и, таким образом, химические свойства соответствующего элемента. Количество нейтронов в ядре называется его изотопическим числом . Ядра с одинаковым числом протонов и разным числом нейтронов называются изотопами. Ядра с одинаковым числом нейтронов, но разным числом протонов - называются изотонами.

Полное количество нуклонов в ядре называется его массовым числом () и приблизительно равно средней массе атома, указанной в таблице Менделеева. Нуклиды с одинаковым массовым числом, но разным протон-нейтронным составом принято называть изобарами.

Масса

Из-за разницы в числе нейтронов изотопы элемента имеют разную массу , которая является важной характеристикой ядра. В ядерной физике массу ядер принято измерять в атомных единицах массы (а. е. м. ), за одну а. е. м. принимают 1/12 часть массы нуклида 12 C [сн 2] . Следует отметить, что стандартная масса, которая обычно приводится для нуклида - это масса нейтрального атома. Для определения массы ядра нужно из массы атома вычесть сумму масс всех электронов(более точное значение получится, если учесть ещё и энергию связи электронов с ядром).

Кроме того, в ядерной физике часто используется энергетический эквивалент массы. Согласно соотношению Эйнштейна, каждому значению массы соответствует полная энергия:



Где - скорость света в вакууме.

Соотношение между а. е. м. и её энергетическим эквивалентом в джоулях:

а так как 1 электронвольт = 1,602176·10 −19 Дж, то энергетический эквивалент а. е. м. в МэВ равен

Радиус

Анализ распада тяжёлых ядер уточнил оценку Резерфорда [сн 3] и связал радиус ядра с массовым числом простым соотношением:

где - константа.

Так как радиус ядра не является чисто геометрической характеристикой и связан прежде всего с радиусом действия ядерных сил, то значение зависит от процесса, при анализе которого получено значение , усреднённое значение м, таким образом радиус ядра в метрах

Заряд

Число протонов в ядре определяет непосредственно его электрический заряд, у изотопов одинаковое количество протонов, но разное количество нейтронов. .

Впервые заряды атомных ядер определил Генри Мозли в 1913 году. Свои экспериментальные наблюдения учёный интерпретировал зависимостью длины волны рентгеновского излучения от некоторой константы , изменяющейся на единицу от элемента к элементу и равной единице для водорода:

, где

И - постоянные.

Энергия связи ядер.

Энергия связи ядра равна минимальной энергии, которую необходимо затратить для полного расщепления ядра на отдельные частицы. Из закона сохранения энергии следует, что энергия связи равна той энергии, которая выделяется при образовании ядра из отдельных частиц.

Энергию связи любого ядра можно определить с помощью точного измерения его массы. В настоящее время физики научились измерять массы частиц – электронов, протонов, нейтронов, ядер и др. – с очень высокой точностью. Эти измерения показывают, что масса любого ядра M я всегда меньше суммы масс входящих в его состав протонов и нейтронов :

Эта энергия выделяется при образовании ядра в виде излучения γ-квантов.

Ядерные силы.

Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10 –15 м. Длина (1,5 – 2,2)·10 –15 м называется радиусом действия ядерных сил.

Ядерные силы обнаруживают зарядовую независимость : притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер . Так называются ядра , в которых одинаково общее число нуклонов , но число протонов в одном равно числу нейтронов другом .

Ядерные силы обладают свойством насыщения , которое проявляется в том , что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов . Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел A . Практически полное насыщение ядерных сил достигается у α-частицы, которая является очень устойчивым образованием.

Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов . Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде. Ядерные силы не являются центральными.

Итак, перечислим общие свойства ядерных сил :

· малый радиус действия ядерных сил (R ~ 1 Фм);

· большая величина ядерного потенциала U ~ 50 МэВ;

· зависимость ядерных сил от спинов взаимодействующих частиц;

· тензорный характер взаимодействия нуклонов;

· ядерные силы зависят от взаимной ориентации спинового и орбитального моментов нуклона (спин-орбитальные силы);

· ядерное взаимодействие обладает свойством насыщения;

· зарядовая независимость ядерных сил;

· обменный характер ядерного взаимодействия;

· притяжение между нуклонами на больших расстояниях (r > 1 Фм), сменяется отталкиванием на малых (r < 0,5 Фм).