Ремонт Дизайн Мебель

Площадь криволинейной трапеции интеграл. Площадь криволинейной трапеции численно равна определенному интегралу

Площадь криволинейной трапеции численно равна определенному интегралу

У любого определенного интеграла (который существует) есть очень хороший геометрический смысл. На уроке я говорил, что определенный интеграл – это число. А сейчас пришла пора констатировать еще один полезный факт. С точки зрения геометрии определенный интеграл – это ПЛОЩАДЬ .

То есть, определенному интегралу (если он существует) геометрически соответствует площадь некоторой фигуры . Например, рассмотрим определенный интеграл . Подынтегральная функция задает на плоскости некоторую кривую (её можно всегда при желании начертить), а сам определенный интеграл численно равен площади соответствующей криволинейной трапеции.

Пример 1

Это типовая формулировка задания. Первый и важнейший момент решения – построение чертежа . Причем, чертеж необходимо построить ПРАВИЛЬНО .

При построении чертежа я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций. Графики функций выгоднее строить поточечно , с техникой поточечного построения можно ознакомиться в справочном материале .

Там же можно найти очень полезный применительно к нашему уроку материал – как быстро построить параболу.

В данной задаче решение может выглядеть так.
Выполним чертеж (обратите внимание, что уравнение задает ось ):


Штриховать криволинейную трапецию я не буду, здесь очевидно, о какой площади идет речь. Решение продолжается так:

На отрезке график функции расположен над осью , поэтому:

Ответ:

У кого возникли трудности с вычислением определенного интеграла и применением формулы Ньютона-Лейбница , обратитесь к лекции Определенный интеграл. Примеры решений .

После того, как задание выполнено, всегда полезно взглянуть на чертеж и прикинуть, реальный ли получился ответ. В данном случае «на глазок» подсчитываем количество клеточек в чертеже – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получился, скажем, ответ: 20 квадратных единиц, то, очевидно, что где-то допущена ошибка – в рассматриваемую фигуру 20 клеточек явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 2

Вычислить площадь фигуры, ограниченной линиями , , и осью

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

Что делать, если криволинейная трапеция расположена под осью ?

Пример 3

Вычислить площадь фигуры, ограниченной линиями , и координатными осями.

Решение: Выполним чертеж:

Если криволинейная трапеция полностью расположена под осью , то её площадь можно найти по формуле:
В данном случае:

Внимание! Не следует путать два типа задач:

1) Если Вам предложено решить просто определенный интеграл без всякого геометрического смысла, то он может быть отрицательным.

2) Если Вам предложено найти площадь фигуры с помощью определенного интеграла, то площадь всегда положительна! Именно поэтому в только что рассмотренной формуле фигурирует минус.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому, от простейших школьных задачек переходим к более содержательным примерам.

Пример 4

Найти площадь плоской фигуры, ограниченной линиями , .

Решение: Сначала нужно выполнить чертеж. Вообще говоря, при построении чертежа в задачах на площадь нас больше всего интересуют точки пересечения линий. Найдем точки пересечения параболы и прямой . Это можно сделать двумя способами. Первый способ – аналитический. Решаем уравнение:

Значит, нижний предел интегрирования , верхний предел интегрирования .
Этим способом лучше, по возможности, не пользоваться.

Гораздо выгоднее и быстрее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой». Техника поточечного построения для различных графиков подробно рассмотрена в справкеГрафики и свойства элементарных функций . Тем не менее, аналитический способ нахождения пределов все-таки приходится иногда применять, если, например, график достаточно большой, или поточенное построение не выявило пределов интегрирования (они могут быть дробными или иррациональными). И такой пример, мы тоже рассмотрим.

Возвращаемся к нашей задаче: рациональнее сначала построить прямую и только потом параболу. Выполним чертеж:

Повторюсь, что при поточечном построении пределы интегрирования чаще всего выясняются «автоматом».

А теперь рабочая формула: Если на отрезке некоторая непрерывная функция больше либо равна некоторой непрерывной функции , то площадь соответствующей фигуры можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, и, грубо говоря, важно, какой график ВЫШЕ (относительно другого графика), а какой – НИЖЕ .

В рассматриваемом примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из необходимо вычесть

Завершение решения может выглядеть так:

Искомая фигура ограничена параболой сверху и прямой снизу.
На отрезке , по соответствующей формуле:

Ответ:

На самом деле школьная формула для площади криволинейной трапеции в нижней полуплоскости (см. простенький пример №3) – частный случай формулы . Поскольку ось задается уравнением , а график функции расположен ниже оси , то

А сейчас пара примеров для самостоятельного решения

Пример 5

Пример 6

Найти площадь фигуры, ограниченной линиями , .

В ходе решения задач на вычисление площади с помощью определенного интеграла иногда случается забавный казус. Чертеж выполнен правильно, расчеты – правильно, но по невнимательности… найдена площадь не той фигуры , именно так несколько раз лажался ваш покорный слуга. Вот реальный случай из жизни:

Пример 7

Вычислить площадь фигуры, ограниченной линиями , , , .

Сначала выполним чертеж:

Фигура, площадь которой нам нужно найти, заштрихована синим цветом (внимательно смотрите на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает, что нужно найти площадь фигуры, которая заштрихована зеленым цветом!

Этот пример еще и полезен тем, что в нём площадь фигуры считается с помощью двух определенных интегралов. Действительно:



1) На отрезке над осью расположен график прямой ;

2) На отрезке над осью расположен график гиперболы .

Совершенно очевидно, что площади можно (и нужно) приплюсовать, поэтому:

Ответ:

Пример 8

Вычислить площадь фигуры, ограниченной линиями ,
Представим уравнения в «школьном» виде , и выполним поточечный чертеж:

Из чертежа видно, что верхний предел у нас «хороший»: .
Но чему равен нижний предел?! Понятно, что это не целое число, но какое? Может быть ? Но где гарантия, что чертеж выполнен с идеальной точностью, вполне может оказаться что . Или корень. А если мы вообще неправильно построили график?

В таких случаях приходиться тратить дополнительное время и уточнять пределы интегрирования аналитически.

Найдем точки пересечения прямой и параболы .
Для этого решаем уравнение:

Следовательно, .

Дальнейшее решение тривиально, главное, не запутаться в подстановках и знаках, вычисления здесь не самые простые.

На отрезке , по соответствующей формуле:

Ответ:

Ну, и в заключение урока, рассмотрим два задания сложнее.

Пример 9

Вычислить площадь фигуры, ограниченной линиями , ,

Решение: Изобразим данную фигуру на чертеже.

Для поточечного построения чертежа необходимо знать внешний вид синусоиды (и вообще полезно знать графики всех элементарных функций ), а также некоторые значения синуса, их можно найти в тригонометрической таблице . В ряде случаев (как в этом) допускается построение схематического чертежа, на котором принципиально правильно должны быть отображены графики и пределы интегрирования.

С пределами интегрирования здесь проблем нет, они следуют прямо из условия: – «икс» изменяется от нуля до «пи». Оформляем дальнейшее решение:

На отрезке график функции расположен над осью , поэтому:

(1) Как интегрируются синусы и косинусы в нечетных степенях можно посмотреть на урокеИнтегралы от тригонометрических функций . Это типовой прием, отщипываем один синус.

(2) Используем основное тригонометрическое тождество в виде

(3) Проведем замену переменной , тогда:

Новые переделы интегрирования:

У кого совсем плохи дела с заменами, прошу пройти на урок Метод замены в неопределенном интеграле . Кому не очень понятен алгоритм замены в определенном интеграле, посетите страницу Определенный интеграл. Примеры решений .

Пример1 . Вычислить площадь фигуры, ограниченной линиями: х + 2у – 4 = 0, у = 0, х = -3, и х = 2


Выполним построение фигуры (см. рис.) Строим прямую х + 2у – 4 = 0 по двум точкам А(4;0) и В(0;2). Выразив у через х, получим у = -0,5х + 2. По формуле (1), где f(x) = -0,5х + 2, а = -3, в = 2, находим

S = = [-0,25=11,25 кв. ед

Пример 2. Вычислить площадь фигуры, ограниченной линиями: х – 2у + 4 = 0, х + у – 5 = 0 и у = 0.

Решение. Выполним построение фигуры.

Построим прямую х – 2у + 4 = 0: у = 0, х = - 4, А(-4; 0); х = 0, у = 2, В(0; 2).

Построим прямую х + у – 5 = 0: у = 0, х = 5, С(5; 0), х = 0, у = 5, D(0; 5).

Найдем точку пересечения прямых, решив систему уравнений:

х = 2, у = 3; М(2; 3).

Для вычисления искомой площади разобьем треугольник АМС на два треугольника АМN и NМС, так как при изменении х от А до N площадь ограничена прямой, а при изменении х от N до С - прямой


Для треугольника АМN имеем: ; у = 0,5х + 2, т. е. f(x) = 0,5х + 2, a = - 4, b = 2.

Для треугольника NМС имеем: y = - x + 5, т. е. f(x) = - x + 5, a = 2, b = 5.

Вычислив площадь каждого из треугольников и сложив результаты, находим:

кв. ед.

кв. ед.

9 + 4, 5 = 13,5 кв. ед. Проверка: = 0,5АС = 0,5 кв. ед.

Пример 3. Вычислить площадь фигуры, ограниченной линиями: y = x 2 , y = 0, x = 2, x = 3.

В данном случае требуется вычислить площадь криволинейной трапеции, ограниченной параболой y = x 2 , прямыми x = 2 и x = 3и осью Ох(см. рис.) По формуле (1) находим площадь криволинейной трапеции


= = 6кв. ед.

Пример 4. Вычислить площадь фигуры, ограниченной линиями: у = - x 2 + 4 и у = 0

Выполним построение фигуры. Искомая площадь заключена между параболой у = - x 2 + 4 и осью Ох.


Найдем точки пересечения параболы с осью Ох. Полагая у = 0, найдем х = Так как данная фигура симметрична относительно оси Оу, то вычислим площадь фигуры, расположенной справа от оси Оу, и полученный результат удвоим: = +4x]кв. ед. 2 = 2 кв. ед.

Пример 5. Вычислить площадь фигуры, ограниченной линиями: y 2 = x, yx = 1, x = 4

Здесь требуется вычислить площадь криволинейной трапеции, ограниченной верхней ветвью параболыy 2 = x, осью Ох и прямыми x = 1иx = 4 (см. рис.)


По формуле (1), где f(x) = a = 1 и b = 4 имеем = (= кв. ед.

Пример 6 . Вычислить площадь фигуры, ограниченной линиями:y = sinx, y = 0, x = 0, x= .

Искомая площадь ограничена полуволной синусоиды и осью Ох (см. рис.).


Имеем - cosx = - cos = 1 + 1 = 2 кв. ед.

Пример 7. Вычислить площадь фигуры, ограниченной линиями: y = - 6х, у = 0 и х = 4.

Фигура расположена под осью Ох (см. рис.).

Следовательно, её площадь находим по формуле (3)


= =

Пример 8. Вычислить площадь фигуры, ограниченной линиями:y = и х = 2. Кривую y = построим по точкам (см. рис.). Таким образом, площадь фигуры находим по формуле (4)

Пример 9 .

х 2 + у 2 = r 2 .

Здесь требуется вычислить площадь, ограниченную окружностью х 2 + у 2 = r 2 , т. е. площадь круга радиуса r с центром в начале координат. Найдем четвертую часть этой площади, взяв пределы интегрирования от 0

доr; имеем: 1 = = [

Следовательно, 1 =

Пример 10. Вычислить площадь фигуры, ограниченной линиями: у= х 2 и у = 2х

Данная фигура ограничена параболой у= х 2 и прямой у = 2х (см. рис.) Для определения точек пересечения заданных линий решим систему уравнений:х 2 – 2х = 0 х = 0 и х = 2


Используя для нахождения площади формулу (5), получим

= (основание криволинейной трапеции) на n равных частей; это разбиение осуществим с помощью точек x 1 , x 2 , ... x k , ... x n-1 . Проведем через эти точки прямые, параллельные оси у. Тогда заданная криволинейная трапеция разобьется на n частей, на n узеньких столбиков. Площадь всей трапеции равна сумме площадей столбиков.

Рассмотрим отдельно k-ый столбик, т.е. криволинейную трапецию, основанием которой служит отрезок . Заменим его прямоугольником с тем же основанием и высотой, равной f(x k) (см. рисунок). Площадь прямоугольника равна \(f(x_k) \cdot \Delta x_k \), где \(\Delta x_k \) - длина отрезка ; естественно считать составленное произведение приближенным значением площади k-го столбика.

Если теперь сделать то же самое со всеми остальными столбиками, то придем к следующему результату: площадь S заданной криволинейной трапеции приближенно равна площади S n ступенчатой фигуры, составленной из n прямоугольников (см. рисунок):
\(S_n = f(x_0)\Delta x_0 + \dots + f(x_k)\Delta x_k + \dots + f(x_{n-1})\Delta x_{n-1} \)
Здесь ради единообразия обозначений мы считаем, что a = х 0 , b = x n ; \(\Delta x_0 \) - длина отрезка , \(\Delta x_1 \) - длина отрезка , и т.д; при этом, как мы условились выше, \(\Delta x_0 = \dots = \Delta x_{n-1} \)

Итак, \(S \approx S_n \), причем это приближенное равенство тем точнее, чем больше n.
По определению полагают, что искомая площадь криволинейной трапеции равна пределу последовательности (S n):
$$ S = \lim_{n \to \infty} S_n $$

Задача 2 (о перемещении точки)
По прямой движется материальная точка. Зависимость скорости от времени выражается формулой v = v(t). Найти перемещение точки за промежуток времени [а; b].
Решение. Если бы движение было равномерным, то задача решалась бы очень просто: s = vt, т.е. s = v(b-а). Для неравномерного движения приходится использовать те же идеи, на которых было основано решение предыдущей задачи.
1) Разделим промежуток времени [а; b] на n равных частей.
2) Рассмотрим промежуток времени и будем считать, что в этот промежуток времени скорость была постоянной, такой, как в момент времени t k . Итак, мы считаем, что v = v(t k).
3) Найдем приближенное значение перемещения точки за промежуток времени , это приближенное значение обозначим s k
\(s_k = v(t_k) \Delta t_k \)
4) Найдем приближенное значение перемещения s:
\(s \approx S_n \) где
\(S_n = s_0 + \dots + s_{n-1} = v(t_0)\Delta t_0 + \dots + v(t_{n-1}) \Delta t_{n-1} \)
5) Искомое перемещение равно пределу последовательности (S n):
$$ s = \lim_{n \to \infty} S_n $$

Подведем итоги. Решения различных задач свелись к одной и той же математической модели. Многие задачи из различных областей науки и техники приводят в процессе решения к такой же модели. Значит, данную математическую модель надо специально изучить.

Понятие определенного интеграла

Дадим математическое описание той модели, которая была построена в трех рассмотренных задачах для функции y = f(x), непрерывной (но необязательно неотрицательной, как это предполагалось в рассмотренных задачах) на отрезке [а; b]:
1) разбиваем отрезок [а; b] на n равных частей;
2) составляем сумму $$ S_n = f(x_0)\Delta x_0 + f(x_1)\Delta x_1 + \dots + f(x_{n-1})\Delta x_{n-1} $$
3) вычисляем $$ \lim_{n \to \infty} S_n $$

В курсе математического анализа доказано, что этот предел в случае непрерывной (или кусочно-непрерывной) функции существует. Его называют определенным интегралом от функции y = f(x) по отрезку [а; b] и обозначают так:
\(\int\limits_a^b f(x) dx \)
Числа a и b называют пределами интегрирования (соответственно нижним и верхним).

Вернемся к рассмотренным выше задачам. Определение площади, данное в задаче 1, теперь можно переписать следующим образом:
\(S = \int\limits_a^b f(x) dx \)
здесь S - площадь криволинейной трапеции, изображенной на рисунке выше. В этом состоит геометрический смысл определенного интеграла.

Определение перемещения s точки, движущейся по прямой со скоростью v = v(t), за промежуток времени от t = a до t = b, данное в задаче 2, можно переписать так:

Формула Ньютона - Лейбница

Для начала ответим на вопрос: какая связь между определенным интегралом и первообразной?

Ответ можно найти в задаче 2. С одной стороны, перемещение s точки, движущейся по прямой со скоростью v = v(t), за промежуток времени от t = а до t = b и вычисляется по формуле
\(S = \int\limits_a^b v(t) dt \)

С другой стороны, координата движущейся точки есть первообразная для скорости - обозначим ее s(t); значит, перемещение s выражается формулой s = s(b) - s(a). В итоге получаем:
\(S = \int\limits_a^b v(t) dt = s(b)-s(a) \)
где s(t) - первообразная для v(t).

В курсе математического анализа доказана следующая теорема.
Теорема. Если функция y = f(x) непрерывна на отрезке [а; b], то справедлива формула
\(S = \int\limits_a^b f(x) dx = F(b)-F(a) \)
где F(x) - первообразная для f(x).

Приведенную формулу обычно называют формулой Ньютона - Лейбница в честь английского физика Исаака Ньютона (1643-1727) и немецкого философа Готфрида Лейбница (1646- 1716), получивших ее независимо друг от друга и практически одновременно.

На практике вместо записи F(b) - F(a) используют запись \(\left. F(x)\right|_a^b \) (ее называют иногда двойной подстановкой ) и, соответственно, переписывают формулу Ньютона - Лейбница в таком виде:
\(S = \int\limits_a^b f(x) dx = \left. F(x)\right|_a^b \)

Вычисляя определенный интеграл, сначала находят первообразную, а затем осуществляют двойную подстановку.

Опираясь на формулу Ньютона - Лейбница, можно получить два свойства определенного интеграла.

Свойство 1. Интеграл от суммы функций равен сумме интегралов:
\(\int\limits_a^b (f(x) + g(x))dx = \int\limits_a^b f(x)dx + \int\limits_a^b g(x)dx \)

Свойство 2. Постоянный множитель можно вынести за знак интеграла:
\(\int\limits_a^b kf(x)dx = k \int\limits_a^b f(x)dx \)

Вычисление площадей плоских фигур с помощью определенного интеграла

С помощью интеграла можно вычислять площади не только криволинейных трапеций, но и плоских фигур более сложного вида, например такого, который представлен на рисунке. Фигура Р ограничена прямыми х = а, х = b и графиками непрерывных функций y = f(x), y = g(x), причем на отрезке [а; b] выполняется неравенство \(g(x) \leq f(x) \). Чтобы вычислить площадь S такой фигуры, будем действовать следующим образом:
\(S = S_{ABCD} = S_{aDCb} - S_{aABb} = \int\limits_a^b f(x) dx - \int\limits_a^b g(x) dx = \)
\(= \int\limits_a^b (f(x)-g(x))dx \)

Итак, площадь S фигуры, ограниченной прямыми х = а, х = b и графиками функций y = f(x), y = g(x), непрерывных на отрезке и таких, что для любого x из отрезка [а; b] выполняется неравенство \(g(x) \leq f(x) \), вычисляется по формуле
\(S = \int\limits_a^b (f(x)-g(x))dx \)

Таблица неопределённых интегралов (первообразных) некоторых функций

$$ \int 0 \cdot dx = C $$ $$ \int 1 \cdot dx = x+C $$ $$ \int x^n dx = \frac{x^{n+1}}{n+1} +C \;\; (n \neq -1) $$ $$ \int \frac{1}{x} dx = \ln |x| +C $$ $$ \int e^x dx = e^x +C $$ $$ \int a^x dx = \frac{a^x}{\ln a} +C \;\; (a>0, \;\; a \neq 1) $$ $$ \int \cos x dx = \sin x +C $$ $$ \int \sin x dx = -\cos x +C $$ $$ \int \frac{dx}{\cos^2 x} = \text{tg} x +C $$ $$ \int \frac{dx}{\sin^2 x} = -\text{ctg} x +C $$ $$ \int \frac{dx}{\sqrt{1-x^2}} = \text{arcsin} x +C $$ $$ \int \frac{dx}{1+x^2} = \text{arctg} x +C $$ $$ \int \text{ch} x dx = \text{sh} x +C $$ $$ \int \text{sh} x dx = \text{ch} x +C $$

Фигура, ограниченная графиком непрерывной неотрицательной на отрезке $$ функции $f(x)$ и прямыми $y=0, \ x=a$ и $x=b$, называется криволинейной трапецией.

Площадь соответствующей криволинейной трапеции вычисляется по формуле:

$S=\int\limits_{a}^{b}{f(x)dx}.$ (*)

Задачи на нахождение площади криволинейной трапеции мы будем условно делить на $4$ типа. Рассмотрим каждый тип подробнее.

I тип: криволинейная трапеция задана явно. Тогда сразу применяем формулу (*).

Например, найти площадь криволинейной трапеции, ограниченной графиком функции $y=4-(x-2)^{2}$, и прямыми $y=0, \ x=1$ и $x=3$.

Нарисуем эту криволинейную трапецию.

Применяя формулу (*), найдём площадь этой криволинейной трапеции.

$S=\int\limits_{1}^{3}{\left(4-(x-2)^{2}\right)dx}=\int\limits_{1}^{3}{4dx}-\int\limits_{1}^{3}{(x-2)^{2}dx}=4x|_{1}^{3} – \left.\frac{(x-2)^{3}}{3}\right|_{1}^{3}=$

$=4(3-1)-\frac{1}{3}\left((3-2)^{3}-(1-2)^{3}\right)=4 \cdot 2 – \frac{1}{3}\left((1)^{3}-(-1)^{3}\right) = 8 – \frac{1}{3}(1+1) =$

$=8-\frac{2}{3}=7\frac{1}{3}$ (ед.$^{2}$).

II тип: криволинейная трапеция задана неявно. У этого случая обычно не задаются или задаются частично прямые $x=a, \ x=b$. В этом случае нужно найти точки пересечения функций $y=f(x)$ и $y=0$. Эти точки и будут точками $a$ и $b$.

Например, найти площадь фигуры, ограниченной графиками функций $y=1-x^{2}$ и $y=0$.

Найдём точки пересечения. Для этого приравняем правые части функций.

Таким образом, $a=-1$, а $b=1$. Нарисуем эту криволинейную трапецию.

Найдём площадь этой криволинейной трапеции.

$S=\int\limits_{-1}^{1}{\left(1-x^{2}\right)dx}=\int\limits_{-1}^{1}{1dx}-\int\limits_{-1}^{1}{x^{2}dx}=x|_{-1}^{1} – \left.\frac{x^{3}}{3}\right|_{-1}^{1}=$

$=(1-(-1))-\frac{1}{3}\left(1^{3}-(-1)^{3}\right)=2 – \frac{1}{3}\left(1+1\right) = 2 – \frac{2}{3} = 1\frac{1}{3}$ (ед.$^{2}$).

III тип: площадь фигуры, ограниченной пересечением двух непрерывных неотрицательных функций. Эта фигура не будет криволинейной трапецией, а значит с помощью формулы (*) её площадь не вычислишь. Как же быть? Оказывается, площадь этой фигуры можно найти как разность площадей криволинейных трапеций, ограниченных верхней функцией и $y=0$ ($S_{uf}$), и нижней функцией и $y=0$ ($S_{lf}$), где в роли $x=a, \ x=b$ выступают координаты по $x$ точек пересечения данных функций, т.е.

$S=S_{uf}-S_{lf}$. (**)

Самое главное при вычислении таких площадей – не “промахнуться” с выбором верхней и нижней функции.

Например, найти площадь фигуры, ограниченной функциями $y=x^{2}$ и $y=x+6$.

Найдём точки пересечения этих графиков:

По теореме Виета,

$x_{1}=-2, \ x_{2}=3.$

То есть, $a=-2, \ b=3$. Изобразим фигуру:

Таким образом, верхняя функция – $y=x+6$, а нижняя – $y=x^{2}$. Далее, найдём $S_{uf}$ и $S_{lf}$ по формуле (*).

$S_{uf}=\int\limits_{-2}^{3}{(x+6)dx}=\int\limits_{-2}^{3}{xdx}+\int\limits_{-2}^{3}{6dx}=\left.\frac{x^{2}}{2}\right|_{-2}^{3} + 6x|_{-2}^{3}= 32,5$ (ед.$^{2}$).

$S_{lf}=\int\limits_{-2}^{3}{x^{2}dx}=\left.\frac{x^{3}}{3}\right|_{-2}^{3} = \frac{35}{3}$ (ед.$^{2}$).

Подставим найденное в (**) и получим:

$S=32,5-\frac{35}{3}= \frac{125}{6}$ (ед.$^{2}$).

IV тип: площадь фигуры, ограниченной функцией (-ями), не удовлетворяющей(-ими) условию неотрицательности. Для того, чтобы найти площадь такой фигуры нужно симметрично относительно оси $Ox$ (иными словами, поставить “минусы” перед функциями) отобразить область и с помощью способов, изложенных в типах I – III, найти площадь отображённой области. Эта площадь и будет искомой площадью. Предварительно, возможно, вам придётся найти точки пересечения графиков функций.

Например, найти площадь фигуры, ограниченной графиками функций $y=x^{2}-1$ и $y=0$.

Найдём точки пересечения графиков функций:

т.е. $a=-1$, а $b=1$. Начертим область.

Симметрично отобразим область:

$y=0 \ \Rightarrow \ y=-0=0$

$y=x^{2}-1 \ \Rightarrow \ y= -(x^{2}-1) = 1-x^{2}$.

Получится криволинейная трапеция, ограниченная графиком функции $y=1-x^{2}$ и $y=0$. Это задача на нахождение криволинейной трапеции второго типа. Мы её уже решали. Ответ был такой: $S= 1\frac{1}{3}$ (ед.$^{2}$). Значит, площадь искомой криволинейной трапеции равна:

$S=1\frac{1}{3}$ (ед.$^{2}$).

Требуется вычислить площадь криволинейной трапеции, ограниченной прямыми ,
,
и кривой
.

Разобьем отрезок
точкаминаэлементарных отрезков, длина
го отрезка
. Восстановим перпендикуляры из точек разбиения отрезка до пересечения с кривой
, пусть
. В результате получаемэлементарных трапеций, сумма их площадей, очевидно, равна сумме заданной криволинейной трапеции.

Определим на каждом элементарном интервале наибольшее и наименьшее значения функции, на первом интервале это
, на втором
и так далее. Вычислим суммы

Первая сумма представляет собой площадь всех описанных, вторая – есть площадь всех вписанных в криволинейную трапецию прямоугольников.

Ясно, что первая сумма дает приближенное значение площади трапеции "с избытком", вторая – "с недостатком". Первую сумму называют верхней суммой Дарбу, вторую – соответственно нижней суммой Дарбу. Таким образом, площадь криволинейной трапеции удовлетворяет неравенству
. Выясним, как ведут себя суммы Дарбу с увеличением числа точек разбиения отрезка
. Пусть число точек разбиения увеличилось на одну, и она находится на середине интервала
. Теперь число как

вписанных, так и описанных прямоугольников увеличилось на единицу. Рассмотрим, как изменилась при этом нижняя сумма Дарбу. Вместо площади
го вписанного прямоугольника, равной
получаем сумму площадей двух прямоугольников
, поскольку длина
не может быть меньше
наименьшего значения функции на
. С другой стороны,
, поскольку
не может быть больше
наибольшего значения функции на интервале
. Итак, добавление новых точек разбиения отрезка увеличивает значение нижней суммы Дарбу и уменьшает верхнюю сумму Дарбу. При этом нижняя сумма Дарбу при каком угодно увеличении количества точек разбиения не может превысить значения любой верхней суммы, так как сумма площадей описанных прямоугольников всегда больше суммы площадей вписанных в криволинейную трапецию прямоугольников.

Таким образом, последовательность нижних сумм Дарбу возрастает с увеличением числа точек разбиения отрезка и ограничена сверху, по известной теореме она имеет предел. Этим пределом является площадь заданной криволинейной трапеции.

Аналогично последовательность верхних сумм Дарбу уменьшается с увеличением числа точек разбиения интервала и ограничена снизу любой нижней суммой Дарбу, значит, она также имеет предел, и он тоже равен площади криволинейной трапеции.

Следовательно, для вычисления площади криволинейной трапеции достаточно для разбиений интервала определить либо нижнюю, либо верхнюю сумму Дарбу, а затем вычислить
, или
.

Однако такое решение задачи предполагает при любом, сколь угодно большом числе разбиений
, нахождение на каждом элементарном интервале наибольшего или наименьшего значения функции, что является весьма трудоемкой задачей.

Более простое решение получается при помощи интегральной суммы Римана, которая представляет собой

где
некоторая точка каждого элементарного интервала, то есть
. Следовательно, интегральная сумма Римана представляет собой сумму площадей всевозможных прямоугольников, причем
. Как было показано выше, пределы верхней и нижней сумм Дарбу одинаковы и равны площади криволинейной трапеции. Используя одно из свойств предела функции (правило двух полицейских), получаем, что при любом разбиении отрезка
и выборе точекплощадь криволинейной трапеции может быть вычислена с помощью формулы
.