Ремонт Дизайн Мебель

Расчет конструкций по первой группе предельных состояний. Готовимся к проверкам по предельным состояниям Первое предельное состояние по прочности

по геометрическому признаку :

    массив - конструкция, в которой все размеры одного порядка;

    брус - элемент, в котором два размера во много раз меньше третьего;

    плита - элемент, в котором один размер во много раз меньше двух других;

    стержневые системы представляют собой геометрически неизменяемые системы стержней, соединенных между собой шарнирно или жестко. К ним относятся строительные фермы (балочные или консольные)

с точки зрения статики:

    статически определимые – конструкции, усилия или напряжения в которых могут быть определены только из уравнений равновесия;

    статически неопределимые – конструкции, для которых одних уравнений статики недостаточно;

по используемым материалам : стальные, деревянные, железобетонные, бетонные, каменные (кирпичные);

с точки зрения напряженно-деформированного состояния (т.е. возникающих в конструкциях внутренних усилий, напряжений и деформаций под действием внешней нагрузки): простейшие, простые, сложные.

  1. Требования к несущим конструкциям:

Надежность – способность конструкции сохранять свои эксплуатационные качества в течение всего срока службы сооружения, а также в период ее транспортирования с заводов на строительную площадку и в момент монтажа.

Долговечность - предельный срок службы зданий и сооружений, в течение которого они сохраняют требуемые эксплуатационные качества.

Индустриальность

Унификация - ограничение количества типоразмеров параметров зданий и типовых изделий с учетом их взаимозаменяемости.

  1. Физический смысл предельных состояний конструкций. Примеры предельных состояний первой и второй групп. Суть расчета по предельным состояниям.

Предельными называются такие состояния для здания, сооружения, а также основания или отдельных конструкций, при которых они перестают удовлетворять заданным эксплуатационным требованиям, а также требованиям, заданным при их возведении. Предельные состояния конструкций (зданий) подразделяются на две группы:

    К предельным состояниям первой группы относятся: общая потеря устойчивости формы; потеря устойчивости положения; хрупкое, вязкое или иного характера разрушение; разрушение под совместным воздействием силовых факторов и неблагоприятных влияний внешней среды и др.

    К предельным состояниям второй группы относятся состояния, затрудняющие нормальную эксплуатацию конструкций (зданий) или снижающие их долговечность вследствие появлений недопустимых перемещений (прогибов, осадок, углов поворота), колебаний и трещин;

Суть расчета: метод расчета строительных конструкций по предельным состояниям имеет своей целью не допустить наступления ни одного из предельных состояний, которые могут возникнуть в конструкции (здании).

  1. Структура и содержание основных расчетных формул при расчете по предельным состояниям первой и второй групп.

При расчетах по предельным состояниям первой и второй групп в качестве главного прочностного показателя материала, как уже отмечалось, устанавливается его сопротивление, которое (наряду с другими характеристиками) может принимать нормативные и расчетные значения:

R n - нормативное сопротивление материала , представляет собой основной параметр сопротивления материалов внешним воздействиям и устанавливается соответствующими главами строительных норм (с учетом условий контроля и статистической изменчивости сопротивлений). Физический смысл нормативного сопротивления R n - это контрольная или браковочная характеристика сопротивления материала с обеспеченностью не менее 0,95%;

R - расчетное сопротивление материала , определяется по формуле:

γ m - коэффициент надежности по материалу , учитывает возможные отклонения сопротивления материала в неблагоприятную сторону от нормативных значений, γ m > 1.

γ c - коэффициент условий работы , учитывает особенности работы материалов, элементов и соединений конструкций, а также зданий и сооружений в целом, если эти особенности имеют систематический характер, но не отражаются в расчетах прямым путем (учет температуры, влажности, агрессивности среды, приближенности расчетных схем и др.);

N ; N ; γ f , учитывает возможные отклонения нагрузок в неблагоприятную (большую или меньшую) сторону от их нормативных значений; γ n - коэффициент надежности по ответственности , учитывает экономические, социальные и экологические последствия, которые могут возникать в результате аварий.

N s ег и сервисное сопротивление R ser считаются расчетными для расчетов по предельным состояниям второй группы.

При расчетах по первой группе предельных состояний , которые связаны с обеспечением несущей способности конструкций (здания), принимают расчетные значения: расчетные нагрузки N и расчетные сопротивления материала R.

    Работа материалов для несущих конструкций под нагрузкой и их расчетные характеристики.

    Сталь .

три участка работы стали: 1 - участок упругой работы; 2 - участок пластической работы; 3 - участок упругопластической работы.

нормативные и расчетные сопротивления, необходимые для расчета конструкций, принимаются по пределу текучести

R уп - нормативное сопротивление стали, принятое по пределу текучести; R y - расчетное сопротивление стали, принятое по пределу текучести;

R ип - нормативное сопротивление стали, принятое по временному сопротивлению; R и - расчетное сопротивление стали, принятое по временному сопротивлению;

    Древесина

Деревянные конструкции выполняются из лесоматериалов хвойных и лиственных пород, которые делятся на круглые - бревна, пиленые - пиломатериалы и строительную фанеру.

Работа древесины зависит от вида загружения (растяжение, сжатие, изгиб, смятие, скалывание), направления действия усилия по отношению к направлению волокон древесины, длительности приложения нагрузки, породы древесины и других факторов. Наличие пороков древесины (косослоя, сучков, трещин и т.п.) оказывает существенное влияние на ее прочность. Древесина подразделяется на три сорта, наиболее качественная древесина отнесена к первому сорту.

Диаграмма работы древесины вдоль волокон: 1 - на растяжение; 2 - на сжатие; Я^р - временное сопротивление чистой древесины; с - нормальные напряжения; е - относительные деформации

    Железобетон. Железобетон является комплексным строительным материалом, в котором совместно работают бетон и стальная арматура. Для понимания работы железобетона и определения характеристик, необходимых для расчета, рассмотрим каждый из входящих в его состав материалов.

Основным показателем качества бетона является класс прочности на сжатие, который устанавливается на основании испытаний бетонных кубов в возрасте 28 суток.

Диаграмма напряжений и деформаций бетона: 1 - зона упругих деформаций; 2- зона пластических деформаций; σ bu - временное сопротивление бетона сжатию; σ btu - временное сопротивление бетона растяжению; Еb - модуль упругости бетона;

    Арматура. Арматура в железобетонных конструкциях принимается в зависимости от типа конструкции, наличия предварительного напряжения, а также условий эксплуатации зданий и сооружений

По характеру работы арматуры, отраженной на диаграмме, различают три вида арматурных сталей: 1. Сталь с выраженной площадкой текучести (мягкая арматурная сталь). Предел текучести таких сталей -σ у 2 - Арматурная сталь с условным пределом текучести - σ 0.2 . Предел текучести таких сталей принимается равным напряжению, при котором остаточные деформации образца составляют 0,2%. 3 - Арматурная сталь с линейной зависимостью σ 0.2 - почти до разрыва. Для таких сталей предел текучести устанавливается как для сталей второго вида.

Диаграммы растяжения арматурных сталей:

.

    Каменная кладка. Прочность каменной кладки зависит в основном от прочности камня (кирпича) и раствора.

Диаграмма деформаций каменной кладки при сжатии: 1 - зона упругих деформаций; 2- зона пластических деформаций; R и - временное сопротивление (средний предел прочности сжатию кладки); tg φ 0 = E 0 - модуль упругости (начальный модуль деформации)

20.12.2018


В основе расчета конструкций по предельным состояниям лежат четко установленные две группы предельных состояний конструкций, которые необходимо не допустить, используя систему расчетных коэффициентов; их введение гарантирует, что предельные состояния не наступят при неблагоприятных сочетаниях нагрузок и при наименьших значениях прочностных характеристик материалов. При наступлении предельных состояний конструкции перестают удовлетворять требованиям эксплуатации, - разрушаются или теряют устойчивость под действием внешних нагрузок и воздействий, или в них развиваются недопустимые перемещения или трещины. С целью более адекватного и экономичного расчета предельные состояния разделены на две принципиально отличающиеся группы - более ответственную первую (конструкции разрушаются при наступлении состояний этой группы) и менее ответственную вторую (конструкции перестают удовлетворять требованиям нормальной эксплуатации, но не разрушаются, их можно ремонтировать). Такой подход позволил дифференцированно назначать нагрузки и прочностные показатели материалов: с целью предохранения от наступления предельных состояний при расчетах по первой группе нагрузки принимаются несколько завышенными, а прочностные характеристики материалов - заниженными по сравнению с расчетами по второй группе. Это позволяет избежать наступления предельных состояний I группы.

В более ответственную первую группу входят предельные состояния по несущей способности, во вторую - по пригодности к нормальной эксплуатации. В предельные состояния первой группы включают хрупкое, вязкое или иного характера разрушение; потерю устойчивости формы конструкции или ее положения; усталостное разрушение; разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (агрессивность среды, попеременное замораживание и оттаивание, и т.д.). Выполняют расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением; расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров; расчет на выносливость конструкций, находящихся под воздействием многократно повторяющейся подвижной или пульсирующей нагрузки; расчет на устойчивость тонкостенных конструкций и т.д. Недавно к расчетам по первой группе добавился новый расчет на прогрессирующее обрушение высоких зданий при воздействиях, не предусмотренных условиями нормальной эксплуатации.

К предельным состояниям второй группы относят недопустимое по ширине и продолжительное раскрытие трещин (если по условиям эксплуатации они допустимы), недопустимые перемещения конструкций (прогибы, углы поворота, углы перекоса и амплитуды колебаний). Расчеты по предельным состояниям конструкций и их элементов выполняют для стадий изготовления, транспортирования, монтажа и эксплуатации. Так, для обычного изгибаемого элемента предельными состояниями I группы будут исчерпание прочности (разрушение) по нормальному и наклонному сечениям; предельными состояниями II группы - образование и раскрытие трещин, прогиб (рис. 3.12). При этом допустимая ширина раскрытия трещин при длительно действующей нагрузке составляет 0,3 мм, так как при этой ширине происходит самозалечивание трещин растущим кристаллическим сростком в цементном камне. Так как каждая десятая доля миллиметра допустимого раскрытия трещин существенно влияет на расход арматуры в конструкциях с обычным армированием, то увеличение допустимой ширины раскрытия трещин даже на 0,1 мм играет очень большую роль в экономии арматуры.

Факторами, входящими в расчет по предельным состояниям (расчетными факторами) являются нагрузки на конструкции, их размеры, и механические характеристики бетона и арматуры. Они непостоянны, и для них характерен разброс значений (статистическая изменчивость). В расчетах учитывают изменчивость нагрузок и механических характеристик материалов, а также факторы нестатистического характера, и различные условия работы бетона и арматуры, изготовления и эксплуатации элементов зданий и сооружений. Все расчетные факторы и расчетные коэффициенты нормируют в соответствующих СП.

Предельные состояния требуют дальнейшего глубокого исследования: так, в расчетах разделяют нормальные и наклонные сечения в одном элементе (желателен единый подход), рассматривается нереальный механизм разрушения в наклонном сечении, не учитываются вторичные эффекты в наклонной трещине (нагельный эффект рабочей арматуры и силы зацепления в наклонной трещине (см. рис. 3.12, и др.)).

Первым расчетным фактором являются нагрузки, которые делятся на нормативные и расчетные, а по длительности действия - на постоянные и временные; последние могут быть кратковременными и длительными. Отдельно рассматривают более редко проявляющиеся особые нагрузки. К постоянным нагрузкам относят собственный вес конструкций, вес и давление грунта, усилия предварительного напряжения арматуры. Длительные нагрузки - это вес стационарного оборудования на перекрытиях, давление газов, жидкостей, сыпучих тел в емкостях, вес содержимого в складах, библиотеках, и пр.; установленная нормами часть временной нагрузки в жилых домах, в служебных и бытовых помещениях; длительные температурные технологические воздействия от оборудования; снеговые нагрузки для III...VI климатических районов с коэффициентами 0,3...0,6. Эти значения нагрузок являются частью их полного значения, они вводятся в расчет с учетом влияния длительности действия нагрузок на перемещения, деформации, образование трещин. К кратковременным нагрузкам относят часть нагрузки на перекрытия жилых и общественных зданий; вес людей, деталей, материалов в зонах обслуживания и ремонта оборудования; нагрузки, возникающие при изготовлении, перевозке и монтаже элементов конструкций; снеговые и ветровые нагрузки; температурные климатические воздействия.

К особым нагрузкам относятся сейсмические и взрывные воздействия; нагрузки, вызываемые неисправностью оборудования и нарушением технологического процесса; неравномерными деформациями основания. Нормативные нагрузки устанавливают нормами по заранее заданной вероятности превышения средних значений или по номинальным значениям. Нормативные постоянные нагрузки принимают по проектным значениям геометрических и конструктивных параметров элементов и по средним значениям плотности материала. Нормативные временные технологические и монтажные нагрузки задают по наибольшим значениям, предусмотренным для нормальной эксплуатации; снеговые и ветровые - по средним из ежегодных неблагоприятных значений или по неблагоприятным значениям, соответствующим определенному среднему периоду их повторений. Величины расчетных нагрузок при расчете конструкций по I группе предельных состояний определяют умножением нормативной нагрузки на коэффициент надежности по нагрузке уf как правило, уf > 1 (это - один из факторов недопущения наступления предельного состояния). Коэффициент уf = 1,1 для собственного веса железобетонных конструкций; уf = 1,2 для собственного веса конструкций из бетонов на легких заполнителях; уf = 1,3 для различных временных нагрузок; но уf = 0,9 для веса конструкций в случаях, когда уменьшение массы ухудшает условия работы конструкции - в расчете устойчивости против всплытия, опрокидывания и скольжения. При расчете по менее опасной II группе предельных состояний уf = 1.

Так как одновременное действие всех нагрузок с максимальными значениями практически невероятно, для большей надежности и экономичности конструкции рассчитывают на разные сочетания нагрузок: они могут быть основными (в них входят постоянные, длительные и кратковременные нагрузки), и особыми (включающими постоянные, длительные, возможные кратковременные и одну из особых нагрузок). В основных сочетаниях при учете не менее двух временных нагрузок их расчетные значения (или соответствующие им усилия) умножают на коэффициенты сочетания: для длительных нагрузок w1 = 0,95; для кратковременных w2 = 0,9; при одной временной нагрузке w1 = w2 = 1. При трех и более кратковременных нагрузках их расчетные значения умножают на коэффициенты сочетаний: w2 = 1 для первой по степени важности кратковременной нагрузки; w2 = 0,8 для второй; w2 = 0,6 для третьей и всех остальных. В особых сочетаниях нагрузок принимают w2 = 0,95 для длительных нагрузок, w2 = 0,8 для кратковременных, кроме случаев проектирования конструкций в сейсмических районах. С целью экономичного проектирования, учитывая степень вероятности одновременного действия нагрузок, при расчете колонн, стен, фундаментов многоэтажных зданий временные нагрузки на перекрытия допускается снижать умножением на коэффициенты: для жилых домов, общежитий, служебных помещений и т.п. при грузовой площади А > 9 м2

Для залов читален, собраний, торговых и др. участков обслуживания и ремонта оборудования в производственных помещениях при грузовой площади А > 36 м2

где n - общее число перекрытий, временные нагрузки от которых учитывают при расчете рассматриваемого сечения.

В расчетах учитывают степень ответственности зданий и сооружений; она зависит от степени материального и социального ущерба при достижении конструкциями предельных состояний. Поэтому при проектировании учитывают коэффициент надежности по назначению уn, который зависит от класса ответственности зданий или сооружений. На коэффициент надежности по назначению делят предельные значения несущей способности, расчетные значения сопротивлений, предельные значения деформаций, раскрытия трещин, и умножают на него расчетные значения нагрузок, усилий и других воздействий. По степени ответственности здания и сооружения делятся на три класса: I класс. уn = 1 - здания и сооружения, имеющие высокое народнохозяйственное или социальное значение; главные корпуса ТЭС, АЭС; телевизионные башни; крытые спортивные сооружения с трибунами; здания театров, кинотеатров, и др.; II класс yn = 0,95 - менее значительные здания и сооружения, не входящие в классы I и III; III класс yn = 0,9 - склады, одноэтажные жилые дома, временные здания и сооружения.

Для более экономичного и обоснованного проектирования железобетонных конструкций установлены три категории требований к трещиностойкости (к сопротивлению образованию трещин в стадии I или сопротивлению раскрытию трещин в стадии II напряженно-деформированного состояния). Требования к образованию и раскрытию нормальных и наклонных к продольной оси элемента трещин зависят от вида применяемой арматуры и условий эксплуатации. При первой категории не допускается образование трещин; при второй категории допускается ограниченное по ширине непродолжительное раскрытие трещин при условии их последующего надежного закрытия; при третьей категории допускается ограниченное по ширине непродолжительное и продолжительное раскрытие трещин. К непродолжительному раскрытию относится раскрытие трещин при действии постоянных, длительных и кратковременных нагрузок; к продолжительному - раскрытие трещин при действии только постоянных и длительных нагрузок.

Предельная ширина раскрытия трещин аcrc, при которой обеспечиваются нормальная эксплуатация зданий, коррозионная стойкость арматуры и долговечность конструкции, в зависимости от категории требований по трещиностойкости не должна превышать 0,1...0,4 мм (см. табл. 3.1).

Предварительно напряженные элементы, находящиеся под давлением жидкости или газов (резервуары, напорные трубы и т.п.) при полностью растянутом сечении со стержневой или проволочной арматурой, а также при частично сжатом сечении с проволочной арматурой диаметром 3 мм и менее, должны отвечать требованиям первой категории. Другие предварительно напряженные элементы в зависимости от условий работы конструкции и вида арматуры должны отвечать требованиям второй или третьей категории. Конструкции без предварительного напряжения со стержневой арматурой класса А400, А500 должны отвечать требованиям третьей категории (см. табл. 3.1).

Порядок учета нагрузок при расчете конструкций на трещиностойкость зависит от категории требований (табл. 3.2). Чтобы не допустить выдергивания напрягаемой арматуры из бетона под нагрузкой и внезапного разрушения конструкций, на концах элементов в пределах длины зоны передачи напряжений с арматуры на бетон не допускается образование трещин при совместном действии всех нагрузок (кроме особых), вводимых в расчет с коэффициентом уf = 1. Трещины, возникающие при изготовлении, транспортировании и монтаже в зоне, которая впоследствии под нагрузкой будет сжатой, приводят к снижению усилий образования трещин в растянутой при эксплуатации зоне, увеличению ширины раскрытия и росту прогибов. Влияние этих трещин учитывают в расчетах. Наиболее важные для конструкции или здания расчеты прочности базируются на III стадии напряженно-деформированного состояния.

Конструкции обладают необходимой прочностью, если усилия от расчетных нагрузок (изгибающего момента, продольной или поперечной силы, и др.) не превышают усилий, воспринимаемых сечением при расчетных сопротивлениях материалов с учетом коэффициентов условий работы. На величину усилий от расчетных нагрузок влияют нормативные нагрузки, коэффициенты надежности, расчетные схемы, и др. Величина усилия, воспринимаемого сечением рассчитываемого элемента, зависит от его формы, размеров сечения, прочности бетона Rbn, арматуры Rsn, коэффициентов надежности по материалам ys и уb и коэффициентов условий работы бетона и арматуры уbi и уsi. Условия прочности всегда выражаются неравенствами, причем левая часть (внешнее воздействие) не может значительно превышать правую часть (внутренние усилия); рекомендуется допускать превышение не более 5 %, иначе повышается неэкономичность проекта.

Предельные состояния второй группы. Расчет по образованию трещин, нормальных и наклонных к продольной оси элемента, выполняют для проверки трещиностойкости элементов, к которым предъявляют требования первой категории (если образование трещин недопустимо). Этот расчет производят и для элементов, к трещиностойкости которых предъявляют требования второй и третьей категории, чтобы установить, появляются ли трещины, и в случае их появления перейти к расчету их раскрытия.

Нормальные к продольной оси трещины не появляются, если изгибающий момент от внешних нагрузок не превосходит момента внутренних сил

Наклонные к продольной оси элемента трещины (в приопорной зоне) не появляются, если главные растягивающие напряжения в бетоне не превосходят расчетных значений. При расчете раскрытия трещин, нормальных и наклонных к продольной оси, определяют ширину раскрытия трещин на уровне растянутой арматуры, чтобы она была не более предельной ширины раскрытия, установленной нормами

При расчете перемещений (прогибов) определяют прогиб элементов от нагрузок с учетом длительности их действия fскс, чтобы он не превышал допустимый прогиб fcrc,ult. Предельные прогибы ограничивают эстетическими и психологическими требованиями (чтобы он не был визуально заметен), технологическими требованиями (для обеспечения нормальной работы разных технологических установок, и др.), конструктивными требованиями (учитывающими влияние соседних элементов, ограничивающих деформации), физиологическими требованиями, и др. (табл. 3.3). Предельные прогибы предварительно напряженных элементов, устанавливаемые эстетико-психологическими требованиями, целесообразно увеличивать на высоту выгиба вследствие преднапряжения (строительного подъема), если это не ограничено технологическими или конструктивными требованиями. При расчете прогибов в случае их ограничения технологическими или конструктивными требованиями расчет ведут на действие постоянных, длительных и кратковременных нагрузок; при их ограничении эстетическими требованиями конструкции рассчитывают на действие постоянных и длительных нагрузок. Предельные прогибы консолей, отнесенные к вылету консоли, увеличивают в 2 раза. Нормами установлены предельные прогибы по физиологическим требованиям. Должен также выполняться расчет зыбкости для лестничных маршей, площадок и др., чтобы добавочный прогиб от кратковременно действующей сосредоточенной нагрузки 1000 H при наиболее невыгодной схеме ее приложения не превышал 0,7 мм.

В III стадии напряженно-деформированного состояния в сечениях, нормальных к продольной оси изгибаемых и внецентренно сжатых с относительно большими эксцентриситетами элементов, при двузначной эпюре напряжений, наблюдается одинаковое изгибное напряженно-деформированное состояние (рис. 3.13). Усилия, воспринимаемые сечением, нормальным к продольной оси элемента, определяют по расчетным сопротивлениям материалов с учетом коэффициентов условий работы. При этом полагают, что бетон растянутой зоны не работает (obt = О); напряжения в бетоне сжатой зоны равны Rb при прямоугольной эпюре напряжений; напряжения в продольной растянутой арматуре равны Rs; продольная арматура в сжатой зоне сечения испытывает напряжение Rsc.

В условии прочности момент внешних сил не должен быть более момента, воспринимаемого внутренними усилиями в сжатом бетоне и в растянутой арматуре. Условие прочности относительно оси, проходящей через центр тяжести растянутой арматуры

где M - момент внешних сил от расчетных нагрузок (во внецентренно сжатых элементах - момент внешней продольной силы относительно той же оси), M = Ne (е - расстояние от силы N до центра тяжести сечения растянутой арматуры); Sb - статический момент площади сечения бетона сжатой зоны относительно той же оси; zs - расстояние между центрами тяжести растянутой и сжатой арматуры.

Напряжение в напрягаемой арматуре, расположенной в сжатой от действия нагрузок зоне, osc определяют по работе. В элементах без предварительного напряжения osc = Rsc. Высоту сжатой зоны х для сечений, работающих по случаю 1, когда в растянутой арматуре и сжатом бетоне достигнуты предельные сопротивления, определяют из уравнения равновесия предельных усилий

где Ab - площадь сечения бетона сжатой зоны; для N принимают знак минус при внецентренном сжатии, знак + при растяжении, N = 0 при изгибе.

Высоту сжатой зоны х для сечений, работающих по случаю 2, когда разрушение происходит по сжатому бетону хрупко, а напряжения в растянутой арматуре не достигают предельного значения, также определяют из уравнения (3.12). Ho в этом случае расчетное сопротивление Rs заменяют напряжением os < Rs. Опытами установлено, что напряжение os зависит от относительной высоты сжатой зоны e = x/ho. Его можно определить по эмпирической формуле

где со = xo/ho - относительная высота сжатой зоны при напряжении в арматуре os = osp (оs = О в элементах без предварительного напряжения).

При os = osp (или при os = 0) фактическая относительная высота сжатой зоны e = 1, и со может рассматриваться как коэффициент полноты фактической эпюры напряжений в бетоне при замене ее условной прямоугольной эпюрой; при этом усилие бетона сжатой зоны Nb = w*ho*Rb (см. рис. 3.13). Значение со называется характеристикой деформативных свойств бетона сжатой зоны. Граничная относительная высота сжатой зоны играет большую роль в расчетах прочности, так как она ограничивает оптимальный случай разрушения, когда растянутая и сжатая зоны одновременно исчерпывают прочность. Граничную относительную высоту сжатой зоны eR = xR/h0, при которой растягивающие напряжения в арматуре начинают достигать предельных значений Rs, находят из зависимости eR = 0,8/(1 + Rs/700), или по табл. 3.2. В общем случае расчет прочности сечения, нормального к продольной оси, выполняют в зависимости от значения относительной высоты сжатой зоны. Если e < eR, высоту сжатой зоны определяют из уравнения (3.12), если же e > eR, прочность рассчитывают. Напряжения высокопрочной арматуры os в предельном состоянии могут превышать условный предел текучести. По данным опытов это может происходить, если e < eR. Превышение оказывается тем большим, чем меньше значение e, Опытная зависимость имеет вид

В расчетах прочности сечений расчетное сопротивление арматуры Rs умножают на коэффициент условий работы арматуры

где n - коэффициент, принимаемый равным: для арматуры классов А600 - 1,2; А800, Вр1200, Вр1500, К1400, К1500 - 1,15; A1000 - 1,1. 4 определяют при ys6 = 1.

Нормы устанавливают предельный процент армирования: площадь сечения продольной растянутой арматуры, а также сжатой, если она требуется по расчету, в процентах от площади сечения бетона, us = As/bh0 принимают не менее: 0,1 % - для изгибаемых, внецентренно растянутых элементов и внецентренно сжатых элементов при гибкости l0/i < 17 (для прямоугольных сечений l0/h < 5); 0,25 % - для внецентренно сжатых элементов при гибкости l0/i > 87 (для прямоугольных сеченийl0/h > 25); для промежуточных значений гибкости элементов значение us определяют но интерполяции. Предельный процент армирования изгибаемых элементов с одиночной арматурой (в растянутой зоне) определяют из уравнения равновесия предельных усилий при высоте сжатой зоны, равной граничной. Для прямоугольного сечения

Предельный процент армирования с учетом значения eR, для предварительно напряженных элементов

Для элементов без предварительного напряжения

Предельный процент армирования уменьшается с повышением класса арматуры. Сечения изгибаемых элементов считают переармированными, если их процент армирования выше предельного. Минимальный процент армирования необходим для восприятия не учитываемых расчетом усадочных, температурных и других усилий. Обычно umin = 0,05 % для продольной растянутой арматуры изгибаемых элементов прямоугольного сечения. Каменные и армокаменные конструкции рассчитывают аналогично железобетонным конструкциям по двум группам предельных состояний. Расчет по I группе должен предотвратить конструкцию от разрушения (расчет по несущей способности), от потери устойчивости формы или положения, усталостное разрушение, разрушение при совместном действии силовых факторов и влияния внешней среды (замораживания, агрессии, и пр.). Расчет по II группе направлен на предотвращение конструкции от недопустимых деформаций, чрезмерного раскрытия трещин, отслоения облицовки кладки. Этот расчет выполняют тогда, когда в конструкциях не допускаются трещины или ограничивается их раскрытие (облицовки резервуаров, внецентренно сжатые стены и столбы при больших эксцентриситетах и т.д.), или ограничивается развитие деформации из условий совместной работы (заполнение стен, каркас, и т.д.).

Строительные конструкции должны, прежде всего, обладать доста-точной надёжностью — т. е. способностью выполнять определённые функции в соответствующих условиях в течение определённого сро-ка. Прекращение выполнения строительной конструкцией хотя бы одной из предусмотренных для неё функций называется отказом.

Таким образом, под отказом понимают возможность наступле-ния такого случайного события, результатом которого являются со-циальные или экономические потери. Считается, что конструкция в момент, предшествующий отказу, переходит в предельное состояние.

Предельными называются такие состояния, при наступлении ко-торых конструкция перестаёт удовлетворять предъявляемым к ней требованиям, т. е. она теряет способность сопротивляться внешним нагрузкам или получает недопустимые перемещения либо местные повреждения.

Причинами наступления в строительных конструкциях предель-ных состояний могут быть перегрузки, невысокое качество матери-алов, из которых они изготовлены, и другое.

Основное отличие рассматриваемого метода от прежних методов расчёта (расчет по допускаемым напряжениям) в том, что здесь чётко устанавливаются предельные состоя-ния конструкций и вместо единого коэффициента запаса прочности k в расчёт вводится система расчётных коэффициентов, гарантиру-ющих конструкцию с определённой обеспеченностью от наступления этих состояний при самых неблагоприяных (но реально возможных) условиях. В настоящее время этот метод расчета принят в качестве основного официального.

Железобетонные конструкции могут потерять необходимые эксплуатационные качества по одной из двух причин:

1. В результате исчерпания несущей способности (разрушение материала в наиболее нагруженных сечениях, потери устойчивости отдельных элементов или всей конструкцией в целом);

2. В следствии чрезмерных деформаций (прогибов, колебаний, осадок), а также из-за образования трещин или чрезмерного их раскрытия.

В соответствии с указанными двумя причинами, которые могут вызвать потерю эксплуатационных качеств конструкций, нормами установлены две группы их предельных состояний:

По несущей способности (первая группа);

По пригодности к нормальней эксплуатации (вторая группа).

Задачей расчёта является предотвращение наступления в рас-сматриваемой конструкции любого предельного состояния в период изготовления, транспортирования, монтажа и эксплуатации.

Расчёты по предельным состояниям первой группы должны обеспечивать в период эксплуатации конструкции и для других ста-дий работы её прочность, устойчивость формы, устойчивость по-ложения, выносливость и др.


Расчёты по предельным состояниям второй группы выполняют, чтобы предотвратить в период эксплуатации конструкции и на дру-гих стадиях её работы чрезмерное по ширине раскрытие трещин, приводящее к преждевременной коррозии арматуры , или их образованиие, а также чрезмерные перемещения.

Расчётные факторы

Это нагрузки и механические характеристики материалов (бетона и арматуры). Они обладают статистической изменчивостью или раз-бросом значений. В расчётах по предельным состояниям учитывают (в неявной форме) изменчивость нагрузок и механических характе-ристик материалов, а также различные неблагоприятные или благо-приятные условия работы бетона и арматуры , условия изготовления и эксплуатации элементов зданий и сооружений.

Нагрузки, механические характеристики материалов и расчёт-ные коэффициенты нормированы. При проектировании железобе-тонных конструкций значения нагрузок, сопротивлений бетона и ар-матуры устанавливают по главам СНиП 2.01.07-85* и СП 52-101-2003.

Классификация нагрузок. Нормативные и расчёт-ные нагрузки

Нагрузки и воздействия на здания и сооружения в зависимости от продолжительности их действия делят на постоянные и временные. Последние, в свою очередь, подразделяются на длительные, крат-ковременные и особые.

являются вес несущих и ограждающих конструкций зданий и сооружений, вес и давление грунтов, воздей-ствие предварительного напряжения железобетонных конструкций.

относятся: вес стационар-ного оборудования на перекрытиях — станков, аппаратов, двига-телей, ёмкостей и т. п.; давление газов, жидкостей, сыпучих тел в ёмкостях; нагрузки на перекрытия от складируемых материалов и стеллажного оборудования в складских помещениях, холодильни-ках, зернохранилищах, книгохранилищах, архивах и подобных по-мещениях; температурные технологические воздействия от стацио-нарного оборудования; вес слоя воды на водонаполненных плоских покрытиях и др.

Относятся: вес людей, ремонтных материалов в зонах обслуживания и ремонта оборудова-ния, снеговые нагрузки с полным нормативным значением, ветро-вые нагрузки, нагрузки, возникающие при изготовлении, перевозке и монтаже элементов конструкций и некоторые др.

относятся: сейсмические и взрывные воз-действия; нагрузки, вызываемые резкими нарушениями технологи-ческого процесса, временной неисправностью или поломкой обору-дования и т. п.

Нагрузки в соответствии со СНиП 2.01.07-85* делятся также на нормативные и расчётные.

Нормативными называются нагрузки или воздействия близкие по величине к наибольшим возможным при нормальной эксплуата-ции зданий и сооружений. Их значения приводятся в нормах.

Изменчивость нагрузок в неблагоприятную сторону оценивают коэффициентом надёжности по нагрузке γ f .

Расчётное значение нагрузки gдля расчёта конструкции на проч-ность или устойчивость определяется путём умножения её норма-тивного значения g п на коэффициент γ f , обычно больший 1

Значения дифференцированы в зависимости от характера на-грузок и их величины. Так, например, при учёте собственного веса бетонных и железобетонных конструкций = 1,1; при учёте соб-ственного веса различных стяжек, засыпок, утеплителей, выполня-емых в заводских условиях, = 1,2, а на строительной площадке = 1,3. Коэффициенты надёжности по нагрузке для равномер-но распределённых нагрузок следует принимать:

1,3 — при полном нормативном значении менее 2 кПа (2 кН/м 2);

1,2 — при полном нормативном значении 2 кПа (2 кН/м 2) и бо-лее. Коэффициент надёжности по нагрузке для собственного веса при расчёте конструкции на устойчивость положения против всплы-тия, опрокидывания и скольжения, а также в других случаях, когда уменьшение массы ухудшает условия работы конструкции, прини-мают равным 0,9.

Расчёты по предельным состояниям второй группы ведут по нор-мативным нагрузкам или по расчётным, взятым с γ f = 1.

Здания и сооружения подвергаются одновременному действию различных нагрузок. Поэтому расчёт здания или сооружения в це-лом, либо отдельных его элементов, должен выполняться с учётом наиболее неблагоприятных сочетаний этих нагрузок или усилий, вы-званных ими. Неблагоприятные, но реально возможные сочетания нагрузок при проектировании выбираются в соответствии с реко-мендациями СНиП 2.01.07-85*.

В зависимости от состава учитываемых нагрузок различают сочетания:

- основные , включающие постоянные, длительные и кратковременные нагрузки

Т = ΣТ пост + ψ 1 ΣТ длит + ψ 2 ΣТ крат,

где Т = М, Т, Q;

ψ - коэффициент сочетаний (если учитывается 1 кратковременная нагрузка, то ψ 1 = ψ 2 =1,0, если в сочетание входят 2 и более кратковременных нагрузок, то ψ 1 = 0,95, ψ 2 = 0,9);

- особые , включающие дополнительно к постоянным, длительным и кратковременным нагрузкам особую нагрузку (ψ 1 = 0,95, ψ 2 = 0,80).

Расчет конструкции, направленной на предотвращение предельных состояний первой группы, выражается неравенством:

N ≤ Ф, (2.1)

где N – усилие в рассматриваемом элементе (продольная сила, изгибающий момент, поперечная сила) от действия предельных расчетных значений нагрузок; Ф – несущая способность элемента.

Для проверки предельных состояний первой группы используются предельные расчетные значения нагрузок F m , определяемые по формуле:

F m = F 0 g fm ,

где F 0 - характеристическое значение нагрузки, g fm , – коэффициент надежности по предельному значению нагрузки, учитывающий возможное отклонение нагрузки в неблагоприятную сторону. Характеристические значения нагрузок F 0 и значения коэффициент g fm определяют в соответствии с ДБН . Этим вопросам посвящены разделы 1.6 – 1.8 настоящей методической разработки.

При подсчете нагрузок, как правило, учитывают коэффициент надежности по назначению сооружения g n , значения которого в зависимости от класса ответственности сооружения и типа расчетной ситуации, приведены в табл. 2.3. Тогда выражение для определения предельных значений нагрузок примет вид:

F m = F 0 g fm ∙g n

Правую часть неравенства (1.1) можно представить в виде:

Ф = S R y g c , (2.2)

где R y – расчетное сопротивление стали, установленное по пределу текучести;S – геометрическая характеристика сечения (при растяжении или сжатии S представляет собой площадь сечения А , при изгибе – момент сопротивления W ); g c – коэффициент условия работы конструкции, значения которого в зависимости от материала конструкции установлены соответствующими нормами. Для стальных конструкций значения g c приведены в табл. 2.4.

Подставляя в формулу (2.1) значение (2.2), получим условие

N ≤ S R y g c

Для растянутых элементов при S = A

N ≤ A R y g c

Разделив левую и правую части неравенства на площадь А, получим условие прочности растянутого или сжатого элемента:

Для изгибаемых элементов при S = W, тогда

M ≤ W R y g c

Из последнего выражения вытекает формула для проверки прочности изгибаемого элемента

Формула для проверки устойчивости сжатого элемента имеет вид:

где φ – коэффициент продольного изгиба, зависящий от гибкости стержня

Таблица 2.4 – Коэффициент условий работы g с

Элементы конструкций g с
1.Сплошные балки и сжатые элементы ферм перекрытий под залами театров, клубов, кинотеатров, под помещениями магазинов, архивов и т.п. при временной нагрузке, которая не превышает вес перекрытия 2. Колонны общественных зданий и опор водонапорных башен. 3. Колоны одноэтажных промышленных зданий с мостовыми кранами 4. Сжатые основные элементы (кроме опорных) решетки составного таврового сечения из уголков сварных ферм покрытий и перекрытий при расчетах на устойчивость этих с гибкостью l ≥ 60 5. Затяжки, тяги, оттяжки, подвески в расчетах на прочность в неослабленных сечениях 6. Элементы конструкций из стали с пределом текучести до 440 Н/мм 2 , несущие статическую нагрузку, в расчетах на прочность в сечении, ослабленном отверстиями болтов (кроме фрикционных соединений) 8. Сжатые элементы из одиночных уголков, прикрепляемых одной полкой (для неравнополочных уголков – меньшей полкою) за исключением элементов решетки пространственных конструкций и плоских ферм из одиночных уголков 9 Опорные плиты, выполненные из стали с пределом текучести до 390 Н/мм 2 , несущую статическую нагрузку, толщиною, мм: а) до 40 включительно б) от 40 до 60 включительно в) от 60 до 80 включительно 0,90 0,95 1,05 0,80 0,90 1,10 0,75 1,20 1,15 1,10
Примечания: 1. Коэффициенты g с < 1 при расчете одновременно учитывать не следует. 2. При расчетах на прочность в сечении, ослабленном отверстиями для болтов, коэффициенты g с поз. 6 и 1, 6 и 2, 6 и 5 следует учитывать одновременно. 3. При расчете опорных плит коэффициенты, приведенные в поз. 9 и 2, 9 и 3, следует учитывать одновременно. 4. При расчете соединений коэффициенты g с для элементов, приведенных в поз. 1 и 2, следует учитывать вместе с коэффициентом g в . 5. В случаях, не оговоренных в настоящей таблице, в расчетных формулах следует принимать g с =1

При расчете конструкций, работающих в условиях повторных нагружений (например, при расчете подкрановых балок), для определения усилий используют циклическую расчетную нагрузку, значение которой определяют по формуле.

Расчет на прочность может производиться по одной из двух методик - по предельному состоянию, или по допускаемым напряжениям. Методика расчета по допускаемым напряжениям принята при расчете машиностроительных конструкций, и основы ее использования приведены в курсе «Сопротивления материалов». При расчете строительных конструкций принята методика расчета по предельному состоянию, более совершенная, чем методика расчета по допускаемым напряжениям.

Предельное напряженное состояние – состояние, когда в точке возникает напряженное состояние, ведущее к возникновению нового процесса. Например, к развитию пластической деформации, к образованию трещины и т.д. Различные ПНС возникают при различных видах нагружения.

Предельное состояние – такое состояние, при котором конструкция теряет работоспособность или ее состояние становится нежелательной. Усилия вызывающие предельное состояние называются предельными

Следует различать предельные состояния и предельные напряженные состояния. Не всегда эти понятия совпадают. Примеры:

Увеличение напряжений при изгибе балки до предела текучести приводит достижению ПНС в точках максимально удаленных от нейтральной линии. Дальнейшее увеличение нагрузки приводит к достижению напряжениями уровня предела текучести во всем сечении – предельного состояния в сечении, в конструкции происходит качественные изменения, перемещения резко увеличиваются, поскольку в наиболее нагруженном сечении образуется пластический шарнир.

Увеличение напряжений при растяжении приводит к последовательному появлению следующих предельных напряженных состояний: а) начала равномерной пластической деформации; б) образования шейки; в) разрушения.

Метод расчета по предельным состояниям

В соответствии с ГОСТ 27751-88 "Надежность строительных конструкций и оснований. Основные положения по расчету" предельные состояния подразделяются на две группы:

    первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

    вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

    разрушением любого характера (например, пластическим, хрупким, усталостным);

    потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

    потерей устойчивости положения;

    переходом в изменяемую систему;

    качественным изменением конфигурации;

    другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

    достижением предельных деформаций конструкции (например, предельных прогибов, поворотов) или предельных деформаций основания;

    достижением предельных уровней колебаний конструкций или оснований;

    образованием трещин;

    достижением предельных раскрытий или длин трещин;

    потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

    другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

Первое предельное состояние для растянутых и сжатых элементов выражается соотношением:

где
– расчетное сопротивление по пределу текучести;

– предел текучести;

– коэффициент надежности по материалу (γ С >1);

– расчетное сопротивление по пределу прочности;

– предел прочности;

– коэффициент условий работы (γ С <1);

-коэффициент надежности для элементов конструкций, рассчитываемых на прочность с использованием расчетных сопротивленийR u ;

– площадь поперечного сечения растянутого (сжатого) элемента.

Для изгибаемых элементов:

Формально величину в правой части неравенств (2 .0), (2 .0), (2 .0), мы можем принять за допускаемое напряжение, приемы расчета по предельному состоянию и допускаемым напряжениям совпадают, однако при расчете по предельным состояниям общий и неизменный коэффициент запаса прочности заменяется несколькими переменными величинами. Это позволяет при расчете по предельному состоянию проектировать эксплуатационно равнопрочные конструкции.

При определении расчетных сопротивлений для сварных швов R W учитываются следующее: основной материал сварной конструкции, вспомогательные материалы используемые при сварке (марки покрытых электродов, электродных проволок), наличие либо отсутствие физических методов контроля сварного шва.