Ремонт Дизайн Мебель

Расчет по предельным состояниям. Концепция предельного состояния

Предельными считаются состояния, при которых кон­струкции перестают удовлетворять предъявляемым к ним в процессе эксплуатации требованиям, т. е. теряют способность сопротивляться внешним нагрузкам и воз­действиям или получают недопустимые перемещения или местные повреждения.

Железобетонные конструкции должны удовлетворять требованиям расчета по двум группам предельных со­стояний: по несущей способности - первая группа пре­дельных состояний; по пригодности к нормальной эксплу­атации - вторая группа предельных состояний.

Расчет по предельным состояниям первой группы выполняют, чтобы предотвратить:

Хрупкое, вязкое или иного характера разрушение (расчет по прочности с учетом в необходимых случаях прогиба конструкции перед разрушением);

Потерю устойчивости формы конструкции (расчет на устойчивость тонкостенных конструкций и т. п.) или ее положения (расчет на опрокидывание и скольжение подпорных стен, внецентренно нагруженных высоких фундаментов; расчет на всплытие заглубленных или подземных резервуаров и т. п.);

Усталостное разрушение (расчет на выносливость конструкций, находящихся под воздействием многократ­но повторяющейся нагрузки подвижной или пульсиру­ющей: подкрановых балок, шпал, рамных фундаментов и перекрытий под неуравновешенные машины и т. п.);

Разрушение от совместного воздействия силовых факторов и неблагоприятных влияний внешней среды (пе­риодического или постоянного воздействия агрессивной среды, действия попеременного замораживания и отта­ивания и т. п.).

Расчет по предельным состояниям второй группы вы­полняют, чтобы предотвратить:

Образование чрезмерного или продолжительного рае- крытия трещин (если по условиям эксплуатации обра­зование или продолжительное раскрытие трещин допу­стимо);

Чрезмерные перемещения (прогибы, углы поворота, углы перекоса и амплитуды колебаний).

Расчет по предельным состояниям конструкции в це­лом, а также отдельных ее элементов или частей произ­водится для всех этапов: изготовления, транспортирова­ния, монтажа и эксплуатации; при этом расчетные схемы должны отвечать принятым конструктивным решениям и каждому из перечисленных этапов.

Расчетные факторы

Расчетные факторы - нагрузки и механические ха­рактеристики бетона и арматуры (временное сопротив­ление, предел текучести)-обладают статистической изменчивостью (разбросом значений). Нагрузки и воздей­ствия могут отличаться от заданной вероятности превыше­ния средних значений, а механические характеристики материалов могут отличаться от заданной вероят­ности снижения средних значений. В расчетах по пре­дельным состояниям учитывают статистическую измен­чивость нагрузок и механических характеристик матери­алов, факторы нестатистического характера и различные неблагоприятные или благоприятные физические, хими­ческие и механические условия работы бетона и армату­ры, изготовления и эксплуатации элементов зданий и со­оружений. Нагрузки, механические характеристики ма­териалов и расчетные коэффициенты нормируют.

Значения нагрузок, сопротивления бетона и армату­ры устанавливают по главам СНиП «Нагрузки и воздей­ствия» и «Бетонные и железобетонные конструкции».

Классификация нагрузок. Нормативные и расчетные нагрузки

В зависимости от продолжительности действия на­грузки делят на постоянные и временные. Временные на­грузки, в свою очередь, подразделяют на длительные, кратковременные, особые.

Постоянными являются нагрузки от веса несущих и ограждающих конструкций зданий и сооружений, массы и давления грунтов, воздействия предварительного на­пряжения железобетонных конструкций.

Длительными являются нагрузки от веса стационар­ного оборудования на перекрытиях - , аппара­тов, двигателей, емкостей и т. п.; давление газов, жид­костей, сыпучих тел в емкостях; нагрузки в складских помещениях, холодильниках, архивах библиотеках и по­добных зданиях и сооружениях; установленная норма­ми часть временной нагрузки в жилых домах, служеб­ных и бытовых помещениях; длительные температурные технологические воздействия от стационарного оборудо­вания; нагрузки от одного подвесного или одного мосто­вого крана, умноженные на коэффициенты: 0,5 для кра­нов среднего режима работы и на 0,7 для кранов тяжелого режима работы; снеговые нагрузки для III-IV климатических районов с коэффициентами 0,3- 0,6. Указанные значения крановых, некоторых времен­ных и снеговых нагрузок составляют часть полного их значения и вводятся в расчет при учете длительности действия нагрузок этих видов на перемещения, деформа­ции, образование трещин. Полные значения этих нагру­зок относятся к кратковременным.

Кратковременными являются нагрузки от веса лю­дей, деталей, материалов в зонах обслуживания и ре­монта оборудования - проходах и других свободных от оборудования участках; часть нагрузки на перекрытиях жилых и общественных зданий; нагрузки, возникающие при изготовлении, перевозке и монтаже элементов кон­струкций; нагрузки от подвесных и мостовых кранов, используемых при возведении или эксплуатации зданий и сооружений; снеговые и ветровые нагрузки; темпера­турные климатические воздействия.

К особым нагрузкам относятся: сейсмические и взрыв­ные воздействия; нагрузки, вызываемые неисправностью или поломкой оборудования и резким нарушением тех­нологического процесса (например, при резком повыше­нии или понижении температуры и т. п.); воздействия неравномерных деформаций основания, сопровождаю­щиеся коренным изменением структуры грунта (напри­мер, деформации просадочных грунтов при замачивании или вечномерзлых грунтов при оттаивании), и др.

Нормативные нагрузки устанавливаются нормами по заранее заданной вероятности превышения средних зна­чений или по номинальным значениям. Нормативные по­стоянные нагрузки принимаются по проектным значе­ниям геометрических и конструктивных параметров и по

Средним значениям плотности. Нормативные временные; технологические и монтажные нагрузки устанавливают­ся по» наибольшим значениям, предусмотренным для нормальной эксплуатации; снеговые и ветровые - по средним из ежегодных неблагоприятных значений или по неблагоприятным значениям, соответствующим опреде­ленному среднему периоду их повторений.

Расчетные нагрузки для расчета конструкций на проч­ность и устойчивость определяют умножением норма­тивной нагрузки на коэффициент надежности по нагруз­ке Yf, обычно больший единицы, например G = Gnyt . Ко­эффициент надежности от веса бетонных и железобетон­ных конструкций Yf = M; от веса конструкций из бето­нов на легких заполнителях (со средней плотностью 1800 кг/м3 и менее) и различных стяжек, засыпок, утеп­лителей, выполняемых в заводских условиях, Yf = l,2,на монтаже Yf = l>3; от различных временных нагрузок в зависимости от их значення Yf = l. 2...1,4. Коэффициент перегрузки от веса конструкций при расчете на устойчи­вость положения против всплытия, опрокидывания н скольжения, а также в других случаях, когда уменьше­ние массы ухудшает условия работы конструкции, принят yf = 0,9. При расчете конструкций на стадии возведе­ния расчетные кратковременные яагрузки умножают на коэффициент 0,8. Расчетные нагрузки для расчета кон­струкций по деформациям и перемещениям (по второй группе предельных состояний) принимают равными нор­мативным значениям с коэффициентом Yf = l-

Сочетание нагрузок. Конструкции должны быть рас­считаны на различные сочетания нагрузок или соответ­ствующие им усилия, если расчет ведется по неупругой схеме. В зависимости от состава учитываемых нагрузок различают: основные сочетания, состоящие из постоян­ных, длительных и кратковременных нагрузок илн уси­лий от ннх; особые сочетания, состоящие из постоянных, длительных, возможных кратковременных и одной из особых нагрузок или усилий от них.

Рассматриваются две группы основных сочетаний на­грузок. При расчете конструкций на основные сочетания первой группы учитываются нагрузки постоянные, дли­тельные и одна кратковременная; прн расчете конструк­ций на основные сочетания второй группы учитываются нагрузки постоянные, длительные и две (или более) кратковременные; при этом значення кратковременных нагрузок или соответствующих им усилий должны умно­жаться на коэффициент сочетаний, равный 0,9.

При расчете конструкций на особые сочетания значе­ния кратковременных нагрузок или соответствующих им усилий должны умножаться на коэффициент сочетаний, равный 0,8, кроме случаев, оговоренных в нормах про­ектирования зданий и сооружений в сейсмических рай­онах.

Снижение нагрузок. При расчете колонн, стен, фун­даментов многоэтажных зданий временные нагрузки на перекрытия допускается снижать, учитывая степень ве­роятности их одновременного действия, умножением на коэффициент

T) = a + 0,6/Km~, (II-11)

Где а - принимается равным 0,3 для жилых домов, служебных зданий, общежитий и т. п. и равным 0,5 для различных залов: читальных, собраний, торговых и т. п.; т - число загруженных перекрытий над рассматриваемым сечением.

Нормами также допускается снижать временные на­грузки при расчете балок и ригелей в зависимости от площади загружаемого перекрытия.

Расчет конструкции, направленной на предотвращение предельных состояний первой группы, выражается неравенством:

N ≤ Ф, (2.1)

где N – усилие в рассматриваемом элементе (продольная сила, изгибающий момент, поперечная сила) от действия предельных расчетных значений нагрузок; Ф – несущая способность элемента.

Для проверки предельных состояний первой группы используются предельные расчетные значения нагрузок F m , определяемые по формуле:

F m = F 0 g fm ,

где F 0 - характеристическое значение нагрузки, g fm , – коэффициент надежности по предельному значению нагрузки, учитывающий возможное отклонение нагрузки в неблагоприятную сторону. Характеристические значения нагрузок F 0 и значения коэффициент g fm определяют в соответствии с ДБН . Этим вопросам посвящены разделы 1.6 – 1.8 настоящей методической разработки.

При подсчете нагрузок, как правило, учитывают коэффициент надежности по назначению сооружения g n , значения которого в зависимости от класса ответственности сооружения и типа расчетной ситуации, приведены в табл. 2.3. Тогда выражение для определения предельных значений нагрузок примет вид:

F m = F 0 g fm ∙g n

Правую часть неравенства (1.1) можно представить в виде:

Ф = S R y g c , (2.2)

где R y – расчетное сопротивление стали, установленное по пределу текучести;S – геометрическая характеристика сечения (при растяжении или сжатии S представляет собой площадь сечения А , при изгибе – момент сопротивления W ); g c – коэффициент условия работы конструкции, значения которого в зависимости от материала конструкции установлены соответствующими нормами. Для стальных конструкций значения g c приведены в табл. 2.4.

Подставляя в формулу (2.1) значение (2.2), получим условие

N ≤ S R y g c

Для растянутых элементов при S = A

N ≤ A R y g c

Разделив левую и правую части неравенства на площадь А, получим условие прочности растянутого или сжатого элемента:

Для изгибаемых элементов при S = W, тогда

M ≤ W R y g c

Из последнего выражения вытекает формула для проверки прочности изгибаемого элемента

Формула для проверки устойчивости сжатого элемента имеет вид:

где φ – коэффициент продольного изгиба, зависящий от гибкости стержня

Таблица 2.4 – Коэффициент условий работы g с

Элементы конструкций g с
1.Сплошные балки и сжатые элементы ферм перекрытий под залами театров, клубов, кинотеатров, под помещениями магазинов, архивов и т.п. при временной нагрузке, которая не превышает вес перекрытия 2. Колонны общественных зданий и опор водонапорных башен. 3. Колоны одноэтажных промышленных зданий с мостовыми кранами 4. Сжатые основные элементы (кроме опорных) решетки составного таврового сечения из уголков сварных ферм покрытий и перекрытий при расчетах на устойчивость этих с гибкостью l ≥ 60 5. Затяжки, тяги, оттяжки, подвески в расчетах на прочность в неослабленных сечениях 6. Элементы конструкций из стали с пределом текучести до 440 Н/мм 2 , несущие статическую нагрузку, в расчетах на прочность в сечении, ослабленном отверстиями болтов (кроме фрикционных соединений) 8. Сжатые элементы из одиночных уголков, прикрепляемых одной полкой (для неравнополочных уголков – меньшей полкою) за исключением элементов решетки пространственных конструкций и плоских ферм из одиночных уголков 9 Опорные плиты, выполненные из стали с пределом текучести до 390 Н/мм 2 , несущую статическую нагрузку, толщиною, мм: а) до 40 включительно б) от 40 до 60 включительно в) от 60 до 80 включительно 0,90 0,95 1,05 0,80 0,90 1,10 0,75 1,20 1,15 1,10
Примечания: 1. Коэффициенты g с < 1 при расчете одновременно учитывать не следует. 2. При расчетах на прочность в сечении, ослабленном отверстиями для болтов, коэффициенты g с поз. 6 и 1, 6 и 2, 6 и 5 следует учитывать одновременно. 3. При расчете опорных плит коэффициенты, приведенные в поз. 9 и 2, 9 и 3, следует учитывать одновременно. 4. При расчете соединений коэффициенты g с для элементов, приведенных в поз. 1 и 2, следует учитывать вместе с коэффициентом g в . 5. В случаях, не оговоренных в настоящей таблице, в расчетных формулах следует принимать g с =1

При расчете конструкций, работающих в условиях повторных нагружений (например, при расчете подкрановых балок), для определения усилий используют циклическую расчетную нагрузку, значение которой определяют по формуле.

Расчет на прочность может производиться по одной из двух методик - по предельному состоянию, или по допускаемым напряжениям. Методика расчета по допускаемым напряжениям принята при расчете машиностроительных конструкций, и основы ее использования приведены в курсе «Сопротивления материалов». При расчете строительных конструкций принята методика расчета по предельному состоянию, более совершенная, чем методика расчета по допускаемым напряжениям.

Предельное напряженное состояние – состояние, когда в точке возникает напряженное состояние, ведущее к возникновению нового процесса. Например, к развитию пластической деформации, к образованию трещины и т.д. Различные ПНС возникают при различных видах нагружения.

Предельное состояние – такое состояние, при котором конструкция теряет работоспособность или ее состояние становится нежелательной. Усилия вызывающие предельное состояние называются предельными

Следует различать предельные состояния и предельные напряженные состояния. Не всегда эти понятия совпадают. Примеры:

Увеличение напряжений при изгибе балки до предела текучести приводит достижению ПНС в точках максимально удаленных от нейтральной линии. Дальнейшее увеличение нагрузки приводит к достижению напряжениями уровня предела текучести во всем сечении – предельного состояния в сечении, в конструкции происходит качественные изменения, перемещения резко увеличиваются, поскольку в наиболее нагруженном сечении образуется пластический шарнир.

Увеличение напряжений при растяжении приводит к последовательному появлению следующих предельных напряженных состояний: а) начала равномерной пластической деформации; б) образования шейки; в) разрушения.

Метод расчета по предельным состояниям

В соответствии с ГОСТ 27751-88 "Надежность строительных конструкций и оснований. Основные положения по расчету" предельные состояния подразделяются на две группы:

    первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

    вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

Предельные состояния первой группы характеризуются:

    разрушением любого характера (например, пластическим, хрупким, усталостным);

    потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

    потерей устойчивости положения;

    переходом в изменяемую систему;

    качественным изменением конфигурации;

    другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

Предельные состояния второй группы характеризуются:

    достижением предельных деформаций конструкции (например, предельных прогибов, поворотов) или предельных деформаций основания;

    достижением предельных уровней колебаний конструкций или оснований;

    образованием трещин;

    достижением предельных раскрытий или длин трещин;

    потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

    другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

Первое предельное состояние для растянутых и сжатых элементов выражается соотношением:

где
– расчетное сопротивление по пределу текучести;

– предел текучести;

– коэффициент надежности по материалу (γ С >1);

– расчетное сопротивление по пределу прочности;

– предел прочности;

– коэффициент условий работы (γ С <1);

-коэффициент надежности для элементов конструкций, рассчитываемых на прочность с использованием расчетных сопротивленийR u ;

– площадь поперечного сечения растянутого (сжатого) элемента.

Для изгибаемых элементов:

Формально величину в правой части неравенств (2 .0), (2 .0), (2 .0), мы можем принять за допускаемое напряжение, приемы расчета по предельному состоянию и допускаемым напряжениям совпадают, однако при расчете по предельным состояниям общий и неизменный коэффициент запаса прочности заменяется несколькими переменными величинами. Это позволяет при расчете по предельному состоянию проектировать эксплуатационно равнопрочные конструкции.

При определении расчетных сопротивлений для сварных швов R W учитываются следующее: основной материал сварной конструкции, вспомогательные материалы используемые при сварке (марки покрытых электродов, электродных проволок), наличие либо отсутствие физических методов контроля сварного шва.

16 ноября 2011

При расчете по этому методу конструкция рассматривается в своем расчетном предельном состоянии. За расчетное предельное состояние принимается такое состояние конструкции, при котором она перестает удовлетворять предъявляемым к ней эксплуатационным требованиям, т. е. либо теряет способность сопротивляться внешним воздействиям, либо получает недопустимую деформацию или местное повреждение.

Для стальных конструкций установлено два расчетных предельных состояния:

  1. первое расчетное предельное состояние, определяемое несущей способностью ( , устойчивостью или выносливостью); этому предельному состоянию должны удовлетворять все стальные конструкции;
  2. второе расчетное предельное состояние, определяемое развитием чрезмерных деформаций (прогибов и перемещений); этому предельному состоянию должны удовлетворять конструкции, в которых величина деформаций может ограничить возможность их эксплуатации.

Первое расчетное предельное состояние выражается неравенством

где N — расчетное усилие в конструкции от суммы воздействий расчетных нагрузок Р в наиболее невыгодной комбинации;

Ф — несущая способность конструкции, являющаяся функцией геометрических размеров конструкции, расчетного сопротивления материала R и коэффициента условий работы m.

Расчетные нагрузки Р, на которые рассчитывается конструкция (по предельному состоянию), принимаются несколько больше нормативные. Расчетная нагрузка определяется, как произведение нормативной нагрузки на коэффициент перегрузки n (больший единицы), учитывающий опасность превышения нагрузки по сравнению с ее нормативным значением вследствие возможной изменчивости нагрузки:

Значения коэффициентов п приведены в таблице Нормативные и расчетные нагрузки, коэффициенты перегрузки.

Таким образом, конструкции рассматривают под воздействием не эксплуатационных (нормативных), а расчетных нагрузок. От воздействия расчетных нагрузок в конструкции определяют расчетные усилия (осевое усилие N или момент М), которые находят по общим правилам сопротивления материалов и строительной механики.

Правая часть основного уравнения (1.I) — несущая способность конструкции Ф — зависит от предельного сопротивления материала силовым воздействиям, характеризуемого механическими свойствами материала и называемого нормативным сопротивлением R н, а также от геометрических характеристик сечения (площади сечения F, момента сопротивления W и т. п.).

Для строительной стали нормативное сопротивление принято равным пределу текучести,

(для наиболее распространенной строительной стали марки Ст. 3 σ т = 2 400 кг/см 2).

За расчетное сопротивление стали R принимают напряжение, равное нормативному сопротивлению, умноженному на коэффициент однородности k (меньший единицы), учитывающий опасность снижения сопротивления материала по сравнению с нормативным его значением вследствие изменчивости механических свойств материала

Для обычных малоуглеродистых сталей k = 0,9, а для сталей повышенного качества (низколегированные) k = 0,85.

Таким образом, расчетное сопротивление R — это напряжение, равное наименьшему возможному значению предела текучести материала, которое и принимается для конструкции как предельное.

Таким образом, основное расчетное уравнение (1.I) будет иметь следующий вид:

  • при проверке конструкции на прочность при действии осевых сил или моментов

где N и M — расчетные осевые силы или моменты от расчетных нагрузок (с учетом коэффициентов перегрузки); F нт — площадь сечения нетто (за вычетом отверстий); W нт — момент сопротивления сечения нетто (за вычетом, отверстий);

  • при проверке конструкции на устойчивость

где F бр и W бр — площадь и момент сопротивления сечения брутто (без вычета отверстий); φ и φ б — коэффициенты, уменьшающие расчетное сопротивление до значений, обеспечивающих устойчивое равновесие.

Обычно при расчете намеченной конструкции сначала подбирают сечение элемента и потом проверяют напряжение от расчетных усилий, которое не должно превышать расчетного сопротивления, умноженного на кoэффициeнт условий работы.

Поэтому наряду с формулами вида (4.I) и (5.I) будем записывать эти формулы в рабочем виде через расчетные напряжения, например:

  • при проверке на прочность

  • при проверке на устойчивость

где σ — расчетное напряжение в конструкции (от расчетных нагрузок).

Коэффициенты φ и φ б в формулах (8.I) и (9.I) правильнее записывать в правой части неравенства, как коэффициенты, снижающие расчетные сопротивления до критических напряжений. И только в целях удобства ведения расчета и сравнения результатов они записываются в знаменателе левой части этих формул.

* Значения нормативных сопротивлений и коэффициентов однородности приведены в «Строительных нормах и правилах» (СНиП), а также в «Нормах и технических условиях проектирования стальных конструкций» (НиТУ 121-55).

«Проектирование стальных конструкций»,
К.К.Муханов


Различают несколько категорий напряжений: основные, местные, дополнительные и внутренние. Основные напряжения — это напряжения, которые развиваются внутри тела в результате уравновешивания воздействий внешних нагрузок; они учитываются расчетом. При неравномерном распределении силового потока по сечению, вызванном, например, резким изменением сечения или наличием отверстия, возникает местная концентрация напряжений. Однако в пластических материалах, к которым относится строительная сталь,…

При расчете то допускаемым напряжениям конструкция рассматривается в ее рабочем состоянии под действием нагрузок, допускаемых при нормальной эксплуатации сооружения, т. е. нормативных нагрузок. Условие прочности конструкции заключается в том, чтобы напряжения в конструкции от нормативных нагрузок не превышали установленных нормами допускаемых напряжений, которые представляют собой некоторую часть от предельного напряжения материала, принимаемого для строительной стали…

по геометрическому признаку :

    массив - конструкция, в которой все размеры одного порядка;

    брус - элемент, в котором два размера во много раз меньше третьего;

    плита - элемент, в котором один размер во много раз меньше двух других;

    стержневые системы представляют собой геометрически неизменяемые системы стержней, соединенных между собой шарнирно или жестко. К ним относятся строительные фермы (балочные или консольные)

с точки зрения статики:

    статически определимые – конструкции, усилия или напряжения в которых могут быть определены только из уравнений равновесия;

    статически неопределимые – конструкции, для которых одних уравнений статики недостаточно;

по используемым материалам : стальные, деревянные, железобетонные, бетонные, каменные (кирпичные);

с точки зрения напряженно-деформированного состояния (т.е. возникающих в конструкциях внутренних усилий, напряжений и деформаций под действием внешней нагрузки): простейшие, простые, сложные.

  1. Требования к несущим конструкциям:

Надежность – способность конструкции сохранять свои эксплуатационные качества в течение всего срока службы сооружения, а также в период ее транспортирования с заводов на строительную площадку и в момент монтажа.

Долговечность - предельный срок службы зданий и сооружений, в течение которого они сохраняют требуемые эксплуатационные качества.

Индустриальность

Унификация - ограничение количества типоразмеров параметров зданий и типовых изделий с учетом их взаимозаменяемости.

  1. Физический смысл предельных состояний конструкций. Примеры предельных состояний первой и второй групп. Суть расчета по предельным состояниям.

Предельными называются такие состояния для здания, сооружения, а также основания или отдельных конструкций, при которых они перестают удовлетворять заданным эксплуатационным требованиям, а также требованиям, заданным при их возведении. Предельные состояния конструкций (зданий) подразделяются на две группы:

    К предельным состояниям первой группы относятся: общая потеря устойчивости формы; потеря устойчивости положения; хрупкое, вязкое или иного характера разрушение; разрушение под совместным воздействием силовых факторов и неблагоприятных влияний внешней среды и др.

    К предельным состояниям второй группы относятся состояния, затрудняющие нормальную эксплуатацию конструкций (зданий) или снижающие их долговечность вследствие появлений недопустимых перемещений (прогибов, осадок, углов поворота), колебаний и трещин;

Суть расчета: метод расчета строительных конструкций по предельным состояниям имеет своей целью не допустить наступления ни одного из предельных состояний, которые могут возникнуть в конструкции (здании).

  1. Структура и содержание основных расчетных формул при расчете по предельным состояниям первой и второй групп.

При расчетах по предельным состояниям первой и второй групп в качестве главного прочностного показателя материала, как уже отмечалось, устанавливается его сопротивление, которое (наряду с другими характеристиками) может принимать нормативные и расчетные значения:

R n - нормативное сопротивление материала , представляет собой основной параметр сопротивления материалов внешним воздействиям и устанавливается соответствующими главами строительных норм (с учетом условий контроля и статистической изменчивости сопротивлений). Физический смысл нормативного сопротивления R n - это контрольная или браковочная характеристика сопротивления материала с обеспеченностью не менее 0,95%;

R - расчетное сопротивление материала , определяется по формуле:

γ m - коэффициент надежности по материалу , учитывает возможные отклонения сопротивления материала в неблагоприятную сторону от нормативных значений, γ m > 1.

γ c - коэффициент условий работы , учитывает особенности работы материалов, элементов и соединений конструкций, а также зданий и сооружений в целом, если эти особенности имеют систематический характер, но не отражаются в расчетах прямым путем (учет температуры, влажности, агрессивности среды, приближенности расчетных схем и др.);

N ; N ; γ f , учитывает возможные отклонения нагрузок в неблагоприятную (большую или меньшую) сторону от их нормативных значений; γ n - коэффициент надежности по ответственности , учитывает экономические, социальные и экологические последствия, которые могут возникать в результате аварий.

N s ег и сервисное сопротивление R ser считаются расчетными для расчетов по предельным состояниям второй группы.

При расчетах по первой группе предельных состояний , которые связаны с обеспечением несущей способности конструкций (здания), принимают расчетные значения: расчетные нагрузки N и расчетные сопротивления материала R.

    Работа материалов для несущих конструкций под нагрузкой и их расчетные характеристики.

    Сталь .

три участка работы стали: 1 - участок упругой работы; 2 - участок пластической работы; 3 - участок упругопластической работы.

нормативные и расчетные сопротивления, необходимые для расчета конструкций, принимаются по пределу текучести

R уп - нормативное сопротивление стали, принятое по пределу текучести; R y - расчетное сопротивление стали, принятое по пределу текучести;

R ип - нормативное сопротивление стали, принятое по временному сопротивлению; R и - расчетное сопротивление стали, принятое по временному сопротивлению;

    Древесина

Деревянные конструкции выполняются из лесоматериалов хвойных и лиственных пород, которые делятся на круглые - бревна, пиленые - пиломатериалы и строительную фанеру.

Работа древесины зависит от вида загружения (растяжение, сжатие, изгиб, смятие, скалывание), направления действия усилия по отношению к направлению волокон древесины, длительности приложения нагрузки, породы древесины и других факторов. Наличие пороков древесины (косослоя, сучков, трещин и т.п.) оказывает существенное влияние на ее прочность. Древесина подразделяется на три сорта, наиболее качественная древесина отнесена к первому сорту.

Диаграмма работы древесины вдоль волокон: 1 - на растяжение; 2 - на сжатие; Я^р - временное сопротивление чистой древесины; с - нормальные напряжения; е - относительные деформации

    Железобетон. Железобетон является комплексным строительным материалом, в котором совместно работают бетон и стальная арматура. Для понимания работы железобетона и определения характеристик, необходимых для расчета, рассмотрим каждый из входящих в его состав материалов.

Основным показателем качества бетона является класс прочности на сжатие, который устанавливается на основании испытаний бетонных кубов в возрасте 28 суток.

Диаграмма напряжений и деформаций бетона: 1 - зона упругих деформаций; 2- зона пластических деформаций; σ bu - временное сопротивление бетона сжатию; σ btu - временное сопротивление бетона растяжению; Еb - модуль упругости бетона;

    Арматура. Арматура в железобетонных конструкциях принимается в зависимости от типа конструкции, наличия предварительного напряжения, а также условий эксплуатации зданий и сооружений

По характеру работы арматуры, отраженной на диаграмме, различают три вида арматурных сталей: 1. Сталь с выраженной площадкой текучести (мягкая арматурная сталь). Предел текучести таких сталей -σ у 2 - Арматурная сталь с условным пределом текучести - σ 0.2 . Предел текучести таких сталей принимается равным напряжению, при котором остаточные деформации образца составляют 0,2%. 3 - Арматурная сталь с линейной зависимостью σ 0.2 - почти до разрыва. Для таких сталей предел текучести устанавливается как для сталей второго вида.

Диаграммы растяжения арматурных сталей:

.

    Каменная кладка. Прочность каменной кладки зависит в основном от прочности камня (кирпича) и раствора.

Диаграмма деформаций каменной кладки при сжатии: 1 - зона упругих деформаций; 2- зона пластических деформаций; R и - временное сопротивление (средний предел прочности сжатию кладки); tg φ 0 = E 0 - модуль упругости (начальный модуль деформации)