Ремонт Дизайн Мебель

Внешние силы вызывающие плоский изгиб. Изгиб. Строим эпюру Q

Задача 1

В некотором сечении балки прямоугольного сечения 20×30см М =28 кНм, Q = 19 кН.

Требуется:

а) определить нормальное и касательное напряжения в заданной точке К, отстоящей от нейтральной оси на расстоянии 11 см,

б) проверить прочность деревянной балки, если [σ]=10 МПа, [τ]=3 МПа.

Решение

а) Для определения σ (К ) , τ (К ) и max σ, max τ потребуется знать величины осевого момента инерции всего сечения I Н.О. , осевого момента сопротивления W Н.О. , статического момента отсечённой части и статического момента половины сечения S max :

б) Проверка прочности:

по условию прочности нормальных напряжений:

по условию прочности касательных напряжений:

Задача 2

В некотором сечении балки М =10кНм, Q =40кН. Поперечное сечение – треугольное. Найти нормальное и касательное напряжения в точке, отстоящей от нейтральной оси на расстоянии 15 см.

где

Тогда

Задача 3

Подобрать сечение деревянной балки в двух вариантах: круглое и прямоугольное (при h /b =2), если [σ]=10 МПа, [τ]=3 МПа, и сравнить их по расходу материала.

А и В и составляем уравнения статики:

(1) ∑М (В ) = F ·8 – М А ·6 + (q ·6)·3 =0,

(2) ∑М (А ) = F ·2 – М + В ·6 — (q ·6)·3 =0,

Iучасток

М (С ) = М (z 1) +F ·z 1 =0,

ММ (z 1) = -F ·z 1 = — 30 ·z 1 —

– уравнение прямой.

При z 1 = 0: М = 0,

z 1 = 2: М =- 60 кНм.

у = — F Q (z 1) = 0,

Q (z 1) = — F = -30 кН – постоянная функция.

II участок

откуда

— уравнение параболы .

При z 2 =0: М = 0,

z 2 =3м: М = 30 · 3 – 5 · 3 2 = 90 — 45 = 45кНм,

z 2 =6м: М = 30 · 6 – 5 · 6 2 = 180 — 180 = 0.

у = Q (z 2) — q ·z 2 + B = 0,

Q (z 2) = q ·z 2 — B = 10·z 2 – 30 – уравнение прямой ,

при z 2 = 0: Q = -30,

z 2 = 6м: Q = 10·6 – 30 = 30.

Определение аналитического максимума изгибающего момента второго участка:

из условиянаходим :

И тогда

Заметим, что скачок в эп.М расположен там, где приложен сосредоточенный момент М = 60кНм и равен этому моменту, а скачок в эп.Q – под сосредоточенной силой А = 60 кН.

Подбор сечения балок производится из условия прочности по нормальным напряжениям, куда следует подставлять наибольший по абсолютной величине изгибающий момент из эпюры М .

В данном случае максимальный момент по модулю М = 60кНм

откуда: :

а) сечение круглой формы d =?

б) сечение прямоугольной формы при h /b = 2:

тогда

Размеры сечения, определенные из условия прочности по нормальным напряжениям, должны удовлетворять также условию прочности по касательным напряжениям:

Для простых форм сечений известны компактные выражения наибольшего касательного напряжения:

для круглого сечения

для прямоугольного сечения

Воспользуемся этими формулами. Тогда

— для балки круглого сечения при :

— для балки прямоугольного сечения

Чтобы выяснить, какое сечение требует меньшего расхода материала, достаточно сравнить величины площадей поперечных сечений:

А прямоугольного = 865,3см 2 < А круглого = 1218,6см 2 , следовательно, балка прямоугольного сечения в этом смысле выгоднее, чем круглого.

Задача 4

Подобрать двутавровое сечение стальной балки, если [σ]=160МПа, [τ]=80МПа.

Задаёмся направлениями опорных реакций А и В и составляем два уравнения статики для их определения:

(1) ∑М (А ) = – М 1 – F ·2 — (q ·8)·4 + М 2 + В ·6 =0,

(2) ∑М (В ) = – М 1 – А · 6 + F · 4 + (q ·8)·2 + М 2 =0,

Проверка:

у = А F q · 8 + В = 104 – 80 – 20 · 8 +136 = 240 – 240 ≡ 0.

М (С ) = М (z 1) - М 1 =0,

М (z 1) = М 1 = 40 кНм – постоянная функция.

у = — Q (z 1) = 0,

Q (z 1) = 0.

II участок

парабола .

Приz 2 =0: М = 40 кНм,

z 2 =1м: М = 40 + 104 – 10=134кНм,

z 2 =2м: М = 40+ 104 · 2 – 10 · 2 2 = 208 кНм.

у =А q ·z 2 — Q (z 2) = 0,

Q (z 2) =А q ·z 2 = 104 – 20·z 2 – уравнение прямой,

при z 2 = 0: Q = 104кН,

z 2 = 6м: Q = 104 – 40 = 64кН.

III участок

— парабола .

Приz 3 =0: М = 24+40=-16 кНм,

z 3 =2м: М = 24 + 136·2 — 10 (2+2) 2 = 24 + 272 – 160 = 136кНм,

z 3 =4м: М = 24 + 136·4 – 10 (2+4) 2 = 24 + 544 – 360 = 208 кНм.

у =В q (2+z 3) + Q (z 3) = 0,

Q (z 3) =- В + q (2+z 3) = -136 + 20 (2+z 3) – уравнение прямой,

при z 3 = 0: Q = -136 + 40 = — 94кН,

z 3 = 4м: Q = — 136 + 20 (2+4) = — 136 + 120 = — 16кН.

IV участок

- парабола.

z 4 =0: М = 0кНм,

z 4 =1м: М = – 10кНм,

z 4 =2м: М = — 40кНм.

у =- q ·z 4 + Q (z 4) = 0,

Q (z 4) =q ·z 4 = 20·z 4 – уравнение прямой.

Приz 4 = 0: Q = 0,

z 4 = 2м: Q = 40кН.

Проверяем скачки в эпюрах:

а) В эпюре М скачок на правой опоре величиной 24кНм (от 16 до 40) равен сосредоточенному моменту М 2 =24, приложенному в этом месте.

б) В эпюре Q три скачка:

первый из них на левой опоре соответствует сосредоточенной реакции А =104кН,

второй – под силой F =80кН и равен ей (64+16=80кН),

третий – на правой опоре и соответствует правой опорной реакции 136кН (94+40=136 кН)

Наконец, проектируем двутавровое сечение.

Подбор его размеров производится из условия прочности по нормальным напряжениям:

М (С ) = М (z 1) + F ·z 1 =0,

М (z 1) = - F ·z 1 = -20·z 1 .

При z 1 =0: М = 0,

z 1 =2м: М = – 40кНм,

у = - F Q (z 1) = 0,

Q (z 1) = — 20кН.

II участок


z 2 =0: М = — 20 – 40 = -60 кНм,

z 2 =4м: М = 200 — 20 – 120 = 200 — 140 = 60кНм.

у =- F + А Q (z 2) = 0,

Q =- F + А= -20+50=30кН.

III участок

- парабола.

Приz 3 =0: М = — 20·4= — 80 кНм,

z 3 =2м: М = 210·2 — 20·(2+2) 2 = 420 – 320 = 100кНм,

z 3 =4м: М = 210·4 – 20 · (2+4) 2 = 840 – 720 = 120кНм.

у = Q (z 3) + В q ·(2+z 3) = 0,

Q (z 3) = — В + q ·(2+z 3) = — 210 + 40·(2+z 3) – уравнение прямой.

Приz 3 = 0: Q = -130кН,

z 3 = 4м: Q = 30кН.

Q (z 0) = — 210 + 40·(2+z 0) = 0,

— 210 + 80 + 40·z 0 = 0,

40·z 0 = 130,

z 0 =3,25м,

IV участок

парабола.

Приz 4 =0: М = 0 кНм,

z 4 =1м: М = – 20кНм,

z 4 =2м: М = — 80кНм.

у =- q ·z 4 + Q (z 4) = 0,

Q (z 4) =q ·z 4 = 40·z 4 – уравнение прямой ,

z 4 = 0: Q = 0,

z 4 = 2м: Q = 80кН.

3. Подбор сечений (опасное сечение по σ: | max М |=131,25кНм,

опасное сечение по τ: | max Q |=130кН).

Вариант 1. Деревянное прямоугольное ([σ]=15МПа, [τ]=3МПа)

Принимаем: В=0,24м,

Н=0,48м.

Проверяем по τ:

Вариант 2. Деревянное круглое

Для консольной балки, нагруженной распределенной нагрузкой интенсивностью кН/м и сосредоточенным моментом кН·м (рис. 3.12), требуется: построить эпюры перерезывающих сил и изгибающих моментов , подобрать балку круглого поперечного сечения при допускаемом нормальном напряжении кН/см2 и проверить прочность балки по касательным напряжениям при допускаемом касательном напряжении кН/см2. Размеры балки м; м; м.

Расчетная схема для задачи на прямой поперечный изгиб

Рис. 3.12

Решение задачи "прямой поперечный изгиб"

Определяем опорные реакции

Горизонтальная реакция в заделке равна нулю, поскольку внешние нагрузки в направлении оси z на балку не действуют.

Выбираем направления остальных реактивных усилий, возникающих в заделке: вертикальную реакцию направим, например, вниз, а момент – по ходу часовой стрелки. Их значения определяем из уравнений статики:

Составляя эти уравнения, считаем момент положительным при вращении против хода часовой стрелки, а проекцию силы положительной, если ее направление совпадает с положительным направлением оси y.

Из первого уравнения находим момент в заделке :

Из второго уравнения – вертикальную реакцию :

Полученные нами положительные значения для момента и вертикальной реакции в заделке свидетельствуют о том, что мы угадали их направления.

В соответствии с характером закрепления и нагружения балки, разбиваем ее длину на два участка. По границам каждого из этих участков наметим четыре поперечных сечения (см. рис. 3.12), в которых мы и будем методом сечений (РОЗУ) вычислять значения перерезывающих сил и изгибающих моментов.

Сечение 1. Отбросим мысленно правую часть балки. Заменим ее действие на оставшуюся левую часть перерезывающей силой и изгибающим моментом . Для удобства вычисления их значений закроем отброшенную нами правую часть балки листком бумаги, совмещая левый край листка с рассматриваемым сечением.

Напомним, что перерезывающая сила, возникающая в любом поперечном сечении, должна уравновесить все внешние силы (активные и реактивные), которые действуют на рассматриваемую (то есть видимую) нами часть балки. Поэтому перерезывающая сила должна быть равна алгебраической сумме всех сил, которые мы видим.

Приведем и правило знаков для перерезывающей силы: внешняя сила, действующая на рассматриваемую часть балки и стремящаяся «повернуть» эту часть относительно сечения по ходу часовой стрелки, вызывает в сечении положительную перерезывающую силу. Такая внешняя сила входит в алгебраическую сумму для определения со знаком «плюс».

В нашем случае мы видим только реакцию опоры , которая вращает видимую нами часть балки относительно первого сечения (относительно края листка бумаги) против хода часовой стрелки. Поэтому

кН.

Изгибающий момент в любом сечении должен уравновесить момент, создаваемый видимыми нами внешними усилиями, относительно рассматриваемого сечения. Следовательно, он равен алгебраической сумме моментов всех усилий, которые действуют на рассматриваемую нами часть балки, относительно рассматриваемого сечения (иными словами, относительно края листка бумаги). При этом внешняя нагрузка, изгибающая рассматриваемую часть балки выпуклостью вниз, вызывает в сечении положительный изгибающий момент. И момент, создаваемый такой нагрузкой, входит в алгебраическую сумму для определения со знаком «плюс».

Мы видим два усилия: реакцию и момент в заделке . Однако у силы плечо относительно сечения 1 равно нулю. Поэтому

кН·м.

Знак «плюс» нами взят потому, что реактивный момент изгибает видимую нами часть балки выпуклостью вниз.

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь, в отличие от первого сечения, у силы появилось плечо: м. Поэтому

кН; кН·м.

Сечение 3. Закрывая правую часть балки, найдем

кН;

Сечение 4. Закроем листком левую часть балки. Тогда

кН·м.

кН·м.

.

По найденным значениям строим эпюры перерезывающих сил (рис. 3.12, б) и изгибающих моментов (рис. 3.12, в).

Под незагруженными участками эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по наклонной прямой вверх. Под опорной реакцией на эпюре имеется скачок вниз на величину этой реакции, то есть на 40 кН.

На эпюре изгибающих моментов мы видим излом под опорной реакцией . Угол излома направлен навстречу реакции опоры. Под распределенной нагрузкой q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. В сечении 6 на эпюре – экстремум, поскольку эпюра перерезывающей силы в этом месте проходит здесь через нулевое значение.

Определяем требуемый диаметр поперечного сечения балки

Условие прочности по нормальным напряжениям имеет вид:

,

где – момент сопротивления балки при изгибе. Для балки круглого поперечного сечения он равен:

.

Наибольший по абсолютному значению изгибающий момент возникает в третьем сечении балки: кН·см.

Тогда требуемый диаметр балки определяется по формуле

см.

Принимаем мм. Тогда

кН/см2 кН/см2.

«Перенапряжение» составляет

,

что допускается.

Проверяем прочность балки по наибольшим касательным напряжениям

Наибольшие касательные напряжения, возникающие в поперечном сечении балки круглого сечения, вычисляются по формуле

,

где – площадь поперечного сечения.

Согласно эпюре , наибольшее по алгебраической величине значение перерезывающей силы равно кН. Тогда

кН/см2 кН/см2,

то есть условие прочности и по касательным напряжениям выполняется, причем, с большим запасом.

Пример решения задачи "прямой поперечный изгиб" №2

Условие примера задачи на прямой поперечный изгиб

Для шарнирно опертой балки, нагруженной распределенной нагрузкой интенсивностью кН/м, сосредоточенной силой кН и сосредоточенным моментом кН·м (рис. 3.13), требуется построить эпюры перерезывающих сил и изгибающих моментов и подобрать балку двутаврового поперечного сечения при допускаемом нормальном напряжении кН/см2 и допускаемом касательном напряжении кН/см2. Пролет балки м.

Пример задачи на прямой изгиб – расчетная схема


Рис. 3.13

Решение примера задачи на прямой изгиб

Определяем опорные реакции

Для заданной шарнирно опертой балки необходимо найти три опорные реакции: , и . Поскольку на балку действуют только вертикальные нагрузки, перпендикулярные к ее оси, горизонтальная реакция неподвижной шарнирной опоры A равна нулю: .

Направления вертикальных реакций и выбираем произвольно. Направим, например, обе вертикальные реакции вверх. Для вычисления их значений составим два уравнения статики:

Напомним, что равнодействующая погонной нагрузки , равномерно распределенной на участке длиной l, равна , то есть равна площади эпюры этой нагрузки и приложена она в центре тяжести этой эпюры, то есть посредине длины.

;

кН.

Делаем проверку: .

Напомним, что силы, направление которых совпадает с положительным направлением оси y, проектируются (проецируются) на эту ось со знаком плюс:

то есть верно.

Строим эпюры перерезывающих сил и изгибающих моментов

Разбиваем длину балки на отдельные участки. Границами этих участков являются точки приложения сосредоточенных усилий (активных и/или реактивных), а также точки, соответствующие началу и окончанию действия распределенной нагрузки. Таких участков в нашей задаче получается три. По границам этих участков наметим шесть поперечных сечений, в которых мы и будем вычислять значения перерезывающих сил и изгибающих моментов (рис. 3.13, а).

Сечение 1. Отбросим мысленно правую часть балки. Для удобства вычисления перерезывающей силы и изгибающего момента , возникающих в этом сечении, закроем отброшенную нами часть балки листком бумаги, совмещая левый край листка бумаги с самим сечением.

Перерезывающая сила в сечении балки равна алгебраической сумме всех внешних сил (активных и реактивных), которые мы видим. В данном случае мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН.

Знак «плюс» взят потому, что сила вращает видимую нами часть балки относительно первого сечения (края листка бумаги) по ходу часовой стрелки.

Изгибающий момент в сечении балки равен алгебраической сумме моментов всех усилий, которые мы видим, относительно рассматриваемого сечения (то есть относительно края листка бумаги). Мы видим реакцию опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Однако у силы плечо равно нулю. Равнодействующая погонной нагрузки также равна нулю. Поэтому

Сечение 2. По-прежнему будем закрывать листком бумаги всю правую часть балки. Теперь мы видим реакцию и нагрузку q, действующую на участке длиной . Равнодействующая погонной нагрузки равна . Она приложена посредине участка длиной . Поэтому

Напомним, что при определении знака изгибающего момента мы мысленно освобождаем видимую нами часть балки от всех фактических опорных закреплений и представляем ее как бы защемленной в рассматриваемом сечении (то есть левый край листка бумаги нами мысленно представляется жесткой заделкой).

Сечение 3. Закроем правую часть. Получим

Сечение 4. Закрываем листком правую часть балки. Тогда

Теперь, для контроля правильности вычислений, закроем листком бумаги левую часть балки. Мы видим сосредоточенную силу P, реакцию правой опоры и погонную нагрузку q, распределенную на бесконечно малой длине. Равнодействующая погонной нагрузки равна нулю. Поэтому

кН·м.

То есть все верно.

Сечение 5. По-прежнему закроем левую часть балки. Будем иметь

кН;

кН·м.

Сечение 6. Опять закроем левую часть балки. Получим

кН;

По найденным значениям строим эпюры перерезывающих сил (рис. 3.13, б) и изгибающих моментов (рис. 3.13, в).

Убеждаемся в том, что под незагруженным участком эпюра перерезывающих сил идет параллельно оси балки, а под распределенной нагрузкой q – по прямой, имеющей наклон вниз. На эпюре имеется три скачка: под реакцией – вверх на 37,5 кН, под реакцией – вверх на 132,5 кН и под силой P – вниз на 50 кН.

На эпюре изгибающих моментов мы видим изломы под сосредоточенной силой P и под опорными реакциями. Углы изломов направлены навстречу этим силам. Под распределенной нагрузкой интенсивностью q эпюра изменяется по квадратичной параболе, выпуклость которой направлена навстречу нагрузке. Под сосредоточенным моментом – скачок на 60 кН ·м, то есть на величину самого момента. В сечении 7 на эпюре – экстремум, поскольку эпюра перерезывающей силы для этого сечения проходит через нулевое значение (). Определим расстояние от сечения 7 до левой опоры.

Балка является основным элементом несущей конструкции сооружения. При строительстве важно провести расчет прогиба балки. В реальном строительстве на данный элемент действует сила ветра, нагружение и вибрации. Однако при выполнении расчетов принято принимать во внимание только поперечную нагрузку или проведенную нагрузку, которая эквивалентна поперечной.

Балки в доме

При расчете балка воспринимается как жесткозакрепленный стержень, который устанавливается на двух опорах. Если она устанавливается на трех и более опорах, расчет ее прогиба является более сложным, и провести его самостоятельно практически невозможно. Основное нагружение рассчитывается как сумма сил, которые действуют в направлении перпендикулярного сечения конструкции. Расчетная схема требуется для определения максимальной деформации, которая не должна быть выше предельных значений. Это позволит определить оптимальный материал необходимого размера, сечения, гибкости и других показателей.

Для строительства различных сооружений применяются балки из прочных и долговечных материалов. Такие конструкции могут отличаться по длине, форме и сечению. Чаще всего используются деревянные и металлические конструкции. Для расчетной схемы прогиба большое значение имеет материал элемента. Особенность расчета прогиба балки в данном случае будет зависеть от однородности и структуры ее материала.

Деревянные

Для постройки частных домов, дач и другого индивидуального строительства чаще всего используются деревянные балки. Деревянные конструкции, работающие на изгиб, могут использоваться для потолочных и напольных перекрытий.

Деревянные перекрытия

Для расчета максимального прогиба следует учитывать:

  1. Материал. Различные породы дерева обладают разным показателем прочности, твердости и гибкости.
  2. Форма поперечного сечения и другие геометрические характеристики.
  3. Различные виды нагрузки на материал.

Допустимый прогиб балки учитывает максимальный реальный прогиб, а также возможные дополнительные эксплуатационные нагрузки.

Конструкции из древесины хвойных пород

Стальные

Металлические балки отличаются сложным или даже составным сечением и чаще всего изготавливаются из нескольких видов металла. При расчете таких конструкций требуется учитывать не только их жесткость, но и прочность соединений.

Стальные перекрытия

Металлические конструкции изготавливаются путем соединения нескольких видов металлопроката, используя при этом такие виды соединений:

  • электросварка;
  • заклепки;
  • болты, винты и другие виды резьбовых соединений.

Стальные балки чаще всего применяются для многоэтажных домов и других видов строительства, где требуется высокая прочность конструкции. В данном случае при использовании качественных соединений гарантируется равномерно распределенная нагрузка на балку.

Для проведения расчета балки на прогиб может помочь видео:

Прочность и жесткость балки

Чтобы обеспечить прочность, долговечность и безопасность конструкции, необходимо выполнять вычисление величины прогиба балок еще на этапе проектирования сооружения. Поэтому крайне важно знать максимальный прогиб балки, формула которого поможет составить заключение о вероятности применения определенной строительной конструкции.

Использование расчетной схемы жесткости позволяет определить максимальные изменения геометрия детали. Расчет конструкции по опытным формулам не всегда эффективен. Рекомендуется использовать дополнительные коэффициенты, позволяющие добавить необходимый запас прочности. Не оставлять дополнительный запас прочности – одна из основных ошибок строительства, которая приводит к невозможности эксплуатации здания или даже тяжелым последствиям.

Существует два основных метода расчета прочности и жесткости:

  1. Простой. При использовании данного метода применяется увеличительный коэффициент.
  2. Точный. Данный метод включает в себя использование не только коэффициентов для запаса прочности, но и дополнительные вычисления пограничного состояния.

Последний метод является наиболее точным и достоверным, ведь именно он помогает определить, какую именно нагрузку сможет выдержать балка.

Расчет балок на прогиб

Расчет на жесткость

Для расчета прочности балки на изгиб применяется формула:

M – максимальный момент, который возникает в балке;

W n,min – момент сопротивления сечения, который является табличной величиной или определяется отдельно для каждого вида профиля.

R y является расчетным сопротивлением стали при изгибе. Зависит от вида стали.

γ c представляет собой коэффициент условий работы, который является табличной величиной.

Расчет жесткости или величины прогиба балки является достаточно простым, поэтому расчеты может выполнить даже неопытный строитель. Однако для точного определения максимального прогиба необходимо выполнить следующие действия:

  1. Составление расчетной схемы объекта.
  2. Расчет размеров балки и ее сечения.
  3. Вычисление максимальной нагрузки, которая воздействует на балку.
  4. Определение точки приложения максимальной нагрузки.
  5. Дополнительно балка может быть проверена на прочность по максимальному изгибающему моменту.
  6. Вычисление значения жесткости или максимально прогиба балки.

Чтобы составить расчетную схему, потребуются такие данные:

  • размеры балки, длину консолей и пролет между ними;
  • размер и форму поперечного сечения;
  • особенности нагрузки на конструкцию и точно ее приложения;
  • материал и его свойства.

Если производится расчет двухопорной балки, то одна опора считается жесткой, а вторая – шарнирной.

Расчет моментов инерции и сопротивления сечения

Для выполнения расчетов жесткости потребуется значение момент инерции сечения (J) и момента сопротивления (W). Для расчета момента сопротивления сечения лучше всего воспользоваться формулой:

Важной характеристикой при определении момента инерции и сопротивления сечения является ориентация сечения в плоскости разреза. При увеличении момента инерции увеличивается и показатель жесткости.

Определение максимальной нагрузки и прогиба

Для точного определения прогиба балки, лучше всего применять данную формулу:

q является равномерно-распределенной нагрузкой;

E – модуль упругости, который является табличной величиной;

l – длина;

I – момент инерции сечения.

Чтобы рассчитать максимальную нагрузку, следует учитывать статические и периодические нагрузки. К примеру, если речь идет о двухэтажном сооружении, то на деревянную балку будет постоянно действовать нагрузка от ее веса, техники, людей.

Особенности расчета на прогиб

Расчет на прогиб проводится обязательно для любых перекрытий. Крайне важен точный расчет данного показателя при значительных внешних нагрузках. Сложные формулы в данном случае использовать необязательно. Если использовать соответствующие коэффициенты, то вычисления можно свести к простым схемам:

  1. Стержень, который опирается на одну жесткую и одну шарнирную опору, и воспринимает сосредоточенную нагрузку.
  2. Стержень, который опирается на жесткую и шарнирную опору, и при этом на него действует распределенное нагружение.
  3. Варианты нагружения консольного стержня, который закреплен жестко.
  4. Действие на конструкцию сложной нагрузки.

Применение этого метода вычисления прогиба позволяет не учитывать материал. Поэтому на расчеты не влияют значения его основных характеристик.

Пример подсчета прогиба

Чтобы понять процесс расчета жесткости балки и ее максимального прогиба, можно использовать простой пример проведения расчетов. Данный расчет проводится для балки с такими характеристиками:

  • материал изготовления – древесина;
  • плотность составляет 600 кг/м3;
  • длина составляет 4 м;
  • сечение материала составляет 150*200 мм;
  • масса перекрывающих элементов составляет 60 кг/м²;
  • максимальная нагрузка конструкции составляет 249 кг/м;
  • упругость материала составляет 100 000 кгс/ м²;
  • J равно 10 кг*м².

Для вычисления максимальной допустимой нагрузки учитывается вес балки, перекрытий и опор. Рекомендуется также учесть вес мебели, приборов, отделки, людей и других тяжелых вещей, который также будут оказывать воздействие на конструкцию. Для расчета потребуются такие данные:

  • вес одного метра балки;
  • вес м2 перекрытия;
  • расстояние, которое оставляется между балками;

Чтобы упросить расчет данного примера, можно принять массу перекрытия за 60 кг/м², нагрузку на каждое перекрытие за 250 кг/м², нагрузки на перегородки 75 кг/м², а вес метра балки равным 18 кг. При расстоянии между балками в 60 см, коэффициент k будет равен 0,6.

Если подставить все эти значения в формулу, то получится:

q = (60 + 250 + 75) * 0,6 + 18 = 249 кг/м.

Для расчета изгибающего момента следует воспользоваться формулой f = (5 / 384) * [(qn * L4) / (E * J)] £ [¦].

Подставив в нее данные, получается f = (5 / 384) * [(qn * L4) / (E * J)] = (5 / 384) * [(249 * 44) / (100 000 * 10)] = 0,13020833 * [(249 * 256) / (100 000 * 10)] = 0,13020833 * (6 3744 / 10 000 000) = 0,13020833 * 0,0000063744 = 0,00083 м = 0,83 см.

Именно это и является показателем прогиба при воздействии на балку максимальной нагрузки. Данные расчеты показывают, что при действии на нее максимальной нагрузки, она прогнется на 0,83 см. Если данный показатель меньше 1, то ее использование при указанных нагрузках допускается.

Использование таких вычислений является универсальным способом вычисления жесткости конструкции и величины их прогибания. Самостоятельно вычислить данные величины достаточно легко. Достаточно знать необходимые формулы, а также высчитать величины. Некоторые данные необходимо взять в таблице. При проведении вычислений крайне важно уделять внимание единицам измерения. Если в формуле величина стоит в метрах, то ее нужно перевести в такой вид. Такие простые ошибки могут сделать расчеты бесполезными. Для вычисления жесткости и максимального прогиба балки достаточно знать основные характеристики и размеры материала. Эти данные следует подставить в несколько простых формул.

При расчете изгибаемых элементов строительных конструкций на прочность применяется метод расчета по предельным состояниям.

В большинстве случаев основное значение при оценке прочности балок и рам имеют нормальные напряжения в поперечных сечениях. При этом наибольшие нормальные напряжения, действующие в крайних волокнах балки, не должны превышать некоторой допустимой для данного материала величины. В методе расчета по предельным состояниям эта величина принимается равной расчетному сопротивлению R, умноженному на коэффициент условий работы у с.

Условие прочности имеет следующий вид:

Значения R и у с для различных материалов приведены в СНиП по строительным конструкциям.

Для балок из пластичного материала, одинаково сопротивляющегося растяжению и сжатию, целесообразно использовать сечения с двумя осями симметрии. В этом случае условие прочности (7.33) с учетом формулы (7.19) записывается в виде

Иногда по конструктивным соображениям применяются балки с несимметричным сечением типа тавра, разнополочного двутавра и т.п. В этих случаях условие прочности (7.33) с учетом (7.17) записывается в виде

В формулах (7.34) и (7.35) W z и W HM - моменты сопротивления сечения относительно нейтральной оси Oz„ М нб - наибольший по абсолютной величине изгибающий момент от действия расчетных нагрузок, т.е. с учетом коэффициента надежности по нагрузке у^.

Сечение балки, в котором действует наибольший по абсолютной величине изгибающий момент, называется опасным сечением.

При расчете на прочность элементов конструкций, работающих на изгиб, решаются следующие задачи: проверка прочности балки; подбор сечения; определение несущей способности (грузоподъемности) балки, т.е. определение значений нагрузок, при которых наибольшие напряжения в опасном сечении балки не превышают значения y c R.

Решение первой задачи сводится к проверке выполнения условий прочности при известных нагрузках, форме и размерах сечения и свойствах материала.

Решение второй задачи сводится к определению размеров сечения заданной формы при известных нагрузках и свойствах материала. Вначале из условий прочности (7.34) или (7.35) определяется величина требуемого момента сопротивления

а затем устанавливаются размеры сечения.

Для прокатных профилей (двутавры, швеллеры) по величине момента сопротивления подбор сечения производится по сортаменту. Для непрокатных сечений устанавливаются характерные размеры сечения.

При решении задачи по определению грузоподъемности балки вначале из условий прочности (7.34) или (7.35) находится величина наибольшего расчетного изгибающего момента по формуле

Затем изгибающий момент в опасном сечении выражается через приложенные к балке нагрузки и из полученного выражения определяются соответствующие величины нагрузок. Например, для стальной двутавровой балки 130, изображенной на рис. 7.47, при R = 210 МПа, у с = 0,9, W z = 472 см 3 находим

По эпюре изгибающих моментов находим


Рис. 7.47

В балках, нагруженных большими по величине сосредоточенными силами, близко расположенными к опорам (рис. 7.48), изгибающий момент М нб может оказаться сравнительно небольшим, а поперечная сила 0 нб по абсолютной величине может быть значительной. В этих случаях необходимо производить проверку прочности балки по наибольшим касательным напряжениям т нб. Условие прочности по касательным напряжениям можно записать в виде

где R s - расчетное сопротивление материала балки при сдвиге. Значения R s для основных строительных материалов приведены в соответствующих разделах СНиП.

Касательные напряжения могут достигать значительной величины в стенках двутавровых балок, особенно в тонких стенках составных балок.

Расчет на прочность по касательным напряжениям может иметь решающее значение для деревянных балок, так как дерево плохо сопротивляется скалыванию вдоль волокон. Так, например, для сосны расчетное сопротивление растяжению и сжатию при изгибе R = 13 МПа, а при скалывании вдоль волокон R CK = 2,4 МПа. Такой расчет необходим также при оценке прочности элементов соединений составных балок - сварных швов, болтов, заклепок, шпонок и т.п.

Условие прочности на скалывание вдоль волокон для деревянной балки прямоугольного сечения с учетом формулы (7.27) можно записать в виде

Пример 7.15. Для балки, показанной на рис. 7.49, а, построим эпюры Q y и M v подберем сечение балки в виде стального прокатного двутавра и построим эпюры с х и т в сечениях с наибольшими Q y и M z . Коэффициент надежности по нагрузке y f = 1,2, расчетное сопротивление R = 210 МПа = 21 кН/см 2 , коэффициент условий работы у с = 1,0.

Расчет начинаем с определения опорных реакций:

Вычислим значения Q y и M z в характерных сечениях балки.



Поперечные силы в пределах каждого участка балки являются постоянными величинами и имеют скачки в сечениях под силой и на опоре В. Изгибающие моменты изменяются по линейному закону. Эпюры Q y и M z приведены на рис. 7.49, б, в.

Опасным является сечение в середине пролета балки, где изгибающий момент имеет наибольшее значение. Вычислим расчетное значение наибольшего изгибающего момента:

Требуемый момент сопротивления равен

По сортаменту принимаем сечение 127 и выписываем необходимые геометрические характеристики сечения (рис. 7.50, а):



Вычислим значения наибольших нормальных напряжений в опасном сечении балки и проверим ее прочность:

Прочность балки обеспечена.

Касательные напряжения имеют наибольшие значения на участке балки, где действует наибольшая по абсолютной величине поперечная сила (2 нб = 35 кН.

Расчетное значение поперечной силы

Вычислим значения касательных напряжений в стенке двутавра на уровне нейтральной оси и на уровне сопряжения стенки с полками:


Эпюры с х и х, в сечении л: = 2,4 м (справа) приведены на рис. 7.50, б, в.

Знак касательных напряжений принят отрицательным, как соответствующий знаку поперечной силы.

Пример 7.16. Для деревянной балки прямоугольного поперечного сечения (рис. 7.51, а) построим эпюры Q и M z , определим высоту сечения h из условия прочности, приняв R = = 14 МПа, уу= 1,4 и у с = 1,0, и проверим прочность балки на скалывание по нейтральному слою, приняв R CK = 2,4 МПа.

Определим опорные реакции:

Вычислим значения Q v и M z
в характерных сечениях балки.


В пределах второго участка поперечная сила обращается в нуль. Положение этого сечения находим из подобия треугольников на эпюре Q y:

Вычислим экстремальное значение изгибающего момента в этом сечении:

Эпюры Q y и M z приведены на рис. 7.51, б, в.

Опасным является сечение балки, где действует максимальный изгибающий момент. Вычислим расчетное значение изгибающего момента в этом сечении:

Требуемый момент сопротивления сечения

Выразим с помощью формулы (7.20) момент сопротивления через высоту сечения h и приравняем его требуемому моменту сопротивления:

Принимаем прямоугольное сечение 12x18 см. Вычислим геометрические характеристики сечения:

Определим наибольшие нормальные напряжения в опасном сечении балки и проверим ее прочность:

Условие прочности выполняется.

Для проверки прочности балки на скалывание вдоль волокон надо определить значения максимальных касательных напряжений в сечении с наибольшей по абсолютной величине поперечной силой 0 нб = 6 кН. Расчетное значение поперечной силы в этом сечении

Максимальные касательные напряжения в поперечном сечении действуют на уровне нейтральной оси. Согласно закону парности они действуют также в нейтральном слое, стремясь вызвать сдвиг одной части балки относительно другой части.

Используя формулу (7.27), вычислим значение т тах и проверим прочность балки на скалывание:

Условие прочности на скалывание выполняется.

Пример 7.17. Для деревянной балки круглого сечения (рис. 7.52, а) построим эпюры Q y n M z n определим из условия прочности необходимый диаметр сечения. В расчетах примем R = 14 МПа, уу = 1,4 и у с = 1,0.

Определим опорные реакции:

Вычислим значения Q и М 7 в характерных сечениях балки.


Эпюры Q y и M z приведены на рис. 7.52, б, в. Опасным является сечение на опоре В с наибольшим по абсолютной величине изгибающим моментом М нб = 4 кНм. Расчетное значение изгибающего момента в этом сечении

Вычислим требуемый момент сопротивления сечения:

Используя формулу (7.21) для момента сопротивления круглого сечения, найдем требуемый диаметр:

Примем D= 16 см и определим наибольшие нормальные напряжения в балке:


Пример 7.18. Определим грузоподъемность балки коробчатого сечения 120x180x10 мм, нагруженной согласно схеме на рис. 7.53, а. Построим эпюры с х и т в опасном сечении. Материал балки - сталь марки ВСтЗ, R = 210 МПа = 21 кН/см 2 , У/= U, Ус = °’ 9 -

Эпюры Q y и M z приведены на рис. 7.53, а.

Опасным является сечение балки вблизи заделки, где действует наибольший по абсолютной величине изгибающий момент М нб - Р1 = 3,2 Р.

Вычислим момент инерции и момент сопротивления коробчатого сечения:

Учитывая формулу (7.37) и полученное значение для Л/ нб, определим расчетное значение силы Р:

Нормативное значение силы

Наибольшие нормальные напряжения в балке от действия расчетной силы

Вычислим статический момент половины сечения ^1/2 и статический момент площади поперечного сечения полки S n относительно нейтральной оси:

Касательные напряжения на уровне нейтральной оси и на уровне сопряжения полки со стенками (рис. 7.53, б) равны:


Эпюры о х и т ух в сечении вблизи заделки приведены на рис. 7.53, в, г.

Процесс проектирования современных строений и построек регулируется огромным количеством различных строительных норм и правил. В большинстве случаев нормы требуют обеспечения определенных характеристик, например, деформации или прогиба балок плит перекрытия под статической или динамической нагрузкой. Например, СНиП № 2.09.03-85 определяет для опор и эстакад прогиб балки не более чем в 1/150 длины пролета. Для чердачных перекрытий этот показатель составляет уже 1/200, а для межэтажных балок и того меньше - 1/250. Поэтому одним из обязательных этапов проектирования является выполнение расчета балки на прогиб.

Способы выполнить расчет и проверку на прогиб

Причина, по которой СНиПы устанавливают столь драконовские ограничения, проста и очевидна. Чем меньше деформация, тем больше запас прочности и гибкости конструкции. Для прогиба менее 0,5% несущий элемент, балка или плита все еще сохраняет упругие свойства, что гарантирует нормальное перераспределение усилий и сохранение целостности всей конструкции. С увеличением прогиба каркас здания прогибается, сопротивляется, но стоит, с выходом за пределы допустимой величины происходит разрыв связей, и конструкция лавинообразно теряет жесткость и несущую способность.

  • Воспользоваться программным онлайн-калькулятором, в котором «зашиты» стандартные условия, и не более того;
  • Использовать готовые справочные данные для различных типов и видов балок, для различных опор схем нагрузок. Нужно только правильно идентифицировать тип и размер балки и определить искомый прогиб;
  • Посчитать допустимый прогиб руками и своей головой, большинство проектировщиков так и делают, в то время как контролирующие архитектурные и строительные инспекции предпочитают второй способ расчета.

К сведению! Чтобы реально представлять, почему так важно знать величину отклонения от первоначального положения, стоить понимать, что измерение величины прогиба является единственным доступным и достоверным способом определить состояние балки на практике.

Измерив, насколько просела балка потолочного перекрытия, можно с 99% уверенностью определить, находится ли конструкция в аварийном состоянии или нет.

Методика выполнения расчета на прогиб

Прежде чем приступать к расчету, нужно будет вспомнить некоторые зависимости из теории сопротивления материалов и составить расчетную схему. В зависимости от того, насколько правильно выполнена схема и учтены условия нагружения, будет зависеть точность и правильность расчета.

Используем простейшую модель нагруженной балки, изображенной на схеме. Простейшей аналогией балки может быть деревянная линейка, фото.

В нашем случае балка:

  1. Имеет прямоугольное сечение S=b*h , длина опирающейся части составляет L ;
  2. Линейка нагружена силой Q , проходящей через центр тяжести изгибаемой плоскости, в результате чего концы поворачиваются на небольшой угол θ , с прогибом относительно начального горизонтального положения, равным f ;
  3. Концы балки опираются шарнирно и свободно на неподвижных опорах, соответственно, не возникает горизонтальной составляющей реакции, и концы линейки могут перемещаться в произвольном направлении.

Для определения деформации тела под нагрузкой используют формулу модуля упругости, который определяется по соотношению Е=R/Δ , где Е - справочная величина, R — усилие, Δ — величина деформации тела.

Вычисляем моменты инерции и сил

Для нашего случая зависимость будет выглядеть так: Δ = Q/(S·Е) . Для распределенной вдоль балки нагрузки q формула будет выглядеть так: Δ = q·h/(S·Е) .

Далее следует наиболее принципиальный момент. Приведенная схема Юнга показывает прогиб балки или деформацию линейки так, если бы ее раздавливали под мощным прессом. В нашем случае балку изгибают, а значит, на концах линейки, относительно центра тяжести, приложены два изгибающих момента с разным знаком. Эпюра нагружения такой балки приведена ниже.

Чтобы преобразовать зависимость Юнга для изгибающего момента, необходимо обе части равенства умножить на плечо L. Получаем Δ*L = Q·L/(b·h·Е) .

Если представить, что одна из опор жестко закреплена, а на второй будет приложен эквивалентный уравновешивающий момент сил M max = q*L*2/8 , соответственно, величина деформации балки будет выражаться зависимостью Δх = M·х/((h/3)·b·(h/2)·Е) . Величину b·h 2 /6 называют моментом инерции и обозначают W . В итоге получается Δх = M·х/(W·Е) основополагающая формула расчета балки на изгиб W=M/E через момент инерции и изгибающий момент.

Чтобы точно выполнить расчет прогиба, потребуется знать изгибающий момент и момент инерции. Величину первого можно посчитать, но конкретная формула для расчета балки на прогиб будет зависеть от условий контакта с опорами, на которых находится балка, и способа нагружения, соответственно для распределенной или концентрированной нагрузки. Изгибающий момент от распределенной нагрузки считается по формуле Mmax = q*L 2 /8. Приведенные формулы справедливы только для распределенной нагрузки. Для случая, когда давление на балку сконцентрировано в определенной точке и зачастую не совпадает с осью симметрии, формулу для расчета прогиба приходится выводить с помощью интегрального исчисления.

Момент инерции можно представить, как эквивалент сопротивления балки изгибающей нагрузке. Величину момента инерции для простой прямоугольной балки можно посчитать по несложной формуле W=b*h 3 /12, где b и h - размеры сечения балки.

Из формулы видно, что одна и та же линейка или доска прямоугольного сечения может иметь совершенно разный момент инерции и величину прогиба, если положить ее на опоры традиционным способом или поставить на ребро. Недаром практически все элементы стропильной системы крыши изготавливаются не из бруса 100х150, а из доски 50х150.

Реальные сечения строительных конструкций могут иметь самые разные профили, от квадрата, круга до сложных двутавровых или швеллерных форм. При этом определение момента инерции и величины прогиба вручную, «на бумажке», для таких случаев становится нетривиальной задачей для непрофессионального строителя.

Формулы для практического использования

На практике чаще всего стоит обратная задача - определить запас прочности перекрытий или стен для конкретного случая по известной величине прогиба. В строительном деле очень сложно дать оценку запасу прочности иными, неразрушающими методами. Нередко по величине прогиба требуется выполнить расчет, оценить запас прочности здания и общее состояние несущих конструкций. Мало того, по выполненным измерениям определяют, является деформация допустимой, согласно расчету, или здание находится в аварийном состоянии.

Совет! В вопросе расчета предельного состояния балки по величине прогиба неоценимую услугу оказывают требования СНиПа. Устанавливая предел прогиба в относительной величине, например, 1/250, строительные нормы существенно облегчают определение аварийного состояния балки или плиты.

Например, если вы намерены покупать готовое здание, простоявшее достаточно долго на проблемном грунте, нелишним будет проверить состояние перекрытия по имеющемуся прогибу. Зная предельно допустимую норму прогиба и длину балки, можно безо всякого расчета оценить, насколько критическим является состояние строения.

Строительная инспекция при оценке прогиба и оценке несущей способности перекрытия идет более сложным путем:

  • Первоначально измеряется геометрия плиты или балки, фиксируется величина прогиба;
  • По измеренным параметрам определяется сортамент балки, далее по справочнику выбирается формула момента инерции;
  • По прогибу и моменту инерции определяют момент силы, после чего, зная материал, можно выполнить расчет реальных напряжений в металлической, бетонной или деревянной балке.

Вопрос - почему так сложно, если прогиб можно получить, используя для расчета формулу для простой балки на шарнирных опорах f=5/24*R*L 2 /(E*h) под распределенным усилием. Достаточно знать длину пролета L, высоту профиля, расчетное сопротивление R и модуль упругости Е для конкретного материала перекрытия.

Совет! Используйте в своих расчетах существующие ведомственные сборники различных проектных организаций, в которых в сжатом виде сведены все необходимые формулы для определения и расчета предельного нагруженного состояния.

Заключение

Аналогичным образом поступает большинство разработчиков и проектантов серьезных построек. Программа - это хорошо, она помогает очень быстро выполнить расчет прогиба и основных параметров нагружения перекрытия, но важно также предоставить заказчику документальное подтверждение полученных результатов в виде конкретных последовательных расчетов на бумаге.