Ремонт Дизайн Мебель

Определение типа гибридизации атомов неорганических веществ. Гибридизация атомных орбиталей углерода

Продолжение. Начало см. в № 15, 16/2004

Урок 5. Гибридизация
атомных орбиталей углерода

Ковалентная химическая связь образуется при помощи общих связывающих электронных пар по типу:

Образовывать химическую связь, т.е. создавать общую электронную пару с «чужим» электроном от другого атома, могут только неспаренные электроны. Неспаренные электроны при записи электронных формул находятся по одному в клетке-орбитали.
Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра атома. Электронное облако – это область пространства, в которой с высокой вероятностью может быть обнаружен электрон.
Для согласования электронного строения атома углерода и валентности этого элемента пользуются представлениями о возбуждении атома углерода. В нормальном (невозбужденном) состоянии атом углерода имеет два неспаренных 2р 2 -электрона. В возбужденном состоянии (при поглощении энергии) один из 2s 2 -электронов может переходить на свободную р -орбиталь. Тогда в атоме углерода появляется четыре неспаренных электрона:

Напомним, что в электронной формуле атома (например, для углерода 6 С – 1s 2 2s 2 2p 2) большие цифры перед буквами – 1, 2 – обозначают номер энергетического уровня. Буквы s и р указывают форму электронного облака (орбитали), а цифры справа над буквами говорят о числе электронов на данной орбитали. Все s -орбитали сферические:

На втором энергетическом уровне кроме 2s -орбитали имеются три 2р -орбитали. Эти 2р -орбитали имеют эллипсоидную форму, похожую на гантели, и ориентированы в пространстве под углом 90° друг к другу. 2р -Орбитали обозначают 2р х , 2р y и 2р z в соответствии с осями, вдоль которых эти орбитали расположены.

При образовании химических связей электронные орбитали приобретают одинаковую форму. Так, в предельных углеводородах смешиваются одна s -орбиталь и три р -орбитали атома углерода с образованием четырех одинаковых (гибридных) 3 -орбиталей:

Это – 3 -гибридизация.
Гибридизация – выравнивание (смешивание) атомных орбиталей (s и р ) с образованием новых атомных орбиталей, называемых гибридными орбиталями .

Гибридные орбитали имеют асимметричную форму, вытянутую в сторону присоединяемого атома. Электронные облака взаимно отталкиваются и располагаются в пространстве максимально далеко друг от друга. При этом оси четырех 3-гибридных орбиталей оказываются направленными к вершинам тетраэдра (правильной треугольной пирамиды).
Соответственно углы между этими орбиталями – тетраэдрические, равные 109°28".
Вершины электронных орбиталей могут перекрываться с орбиталями других атомов. Если электронные облака перекрываются по линии, соединяющий центры атомов, то такую ковалентную связь называют сигма()-связью . Например, в молекуле этана С 2 Н 6 химическая связь образуется между двумя атомами углерода перекрыванием двух гибридных орбиталей. Это -связь. Кроме того, каждый из атомов углерода своими тремя 3 -орбиталями перекрывается с s -орбиталями трех атомов водорода, образуя три -связи.

Всего для атома углерода возможны три валентных состояния с различным типом гибридизации. Кроме 3 -гибридизации существует 2 - и -гибридизация.
2 -Гибридизация – смешивание одной s - и двух р -орбиталей. В результате образуются три гибридные 2 -орбитали. Эти 2 -орбитали расположены в одной плоскости (с осями х , у ) и направлены к вершинам треугольника с углом между орбиталями 120°. Негибридизованная
р -орбиталь перпендикулярна к плоскости трех гибридных 2 -орбиталей (ориентирована вдоль оси z ). Верхняя половина р -орбитали находится над плоскостью, нижняя половина – под плоскостью.
Тип 2 -гибридизации углерода бывает у соединений с двойной связью: С=С, С=О, С=N. Причем только одна из связей между двумя атомами (например, С=С) может быть -связью. (Другие связывающие орбитали атома направлены в противоположные стороны.) Вторая связь образуется в результате перекрывания негибридных р -орбиталей по обе стороны от линии, соединяющей ядра атомов.

Ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей соседних углеродных атомов, называется пи()-связью .

Образование
-связи

Из-за меньшего перекрывании орбиталей -связь менее прочная, чем -связь.
-Гибридизация – это смешивание (выравнивание по форме и энергии) одной s- и одной
р -орбиталей с образованием двух гибридных -орбиталей. -Орбитали расположены на одной линии (под углом 180°) и направлены в противоположные стороны от ядра атома углерода. Две
р -орбитали остаются негибридизованными. Они размещены взаимно перпендикулярно
направлениям -связей. На рисунке -орбитали показаны вдоль оси y , а негибридизованные две
р -орбитали– вдоль осей х и z .

Тройная углерод-углеродная связь СС состоит из -связи, возникающей при перекрывании
sp -гибридных орбиталей, и двух -связей.
Взаимосвязь таких параметров атома углерода, как число присоединенных групп, тип гибридизации и типы образуемых химических связей, показана в таблице 4.

Таблица 4

Ковалентные связи углерода

Число групп,
связанных
с углеродом
Тип
гибридизации
Типы
участвующих
химических связей
Примеры формул соединений
4 sp 3 Четыре - связи
3 sp 2 Три - связи и
одна - связь
2 sp Две - связи
и две -связи

H–CC–H

Упражнения .

1. Какие электроны атомов (например, углерода или азота) называют неспаренными?

2. Что означает понятие «общие электронные пары» в соединениях с ковалентной связью (например, СН 4 или Н 2 S)?

3. Какие электронные состояния атомов (например, С или N) называют основными, а какие возбужденными?

4. Что означают цифры и буквы в электронной формуле атома (например, С или N)?

5. Что такое атомная орбиталь? Сколько орбиталей на втором энергетическом уровне атома С и чем они различаются?

6. В чем отличие гибридных орбиталей от исходных орбиталей, из которых они образовались?

7. Какие типы гибридизации известны для атома углерода и в чем они заключаются?

8. Нарисуйте картинку пространственного расположения орбиталей для одного из электронных состояний атома углерода.

9. Какие химические связи называют и какие ? Укажите - и -связи в соединениях:

10. Для атомов углерода приведенных ниже соединений укажите: а) тип гибридизации; б) типы его химических связей; в) валентные углы.

Ответы на упражнения к теме 1

Урок 5

1. Электроны, которые находятся по одному на орбитали, называют неспаренными электронами . Например, в электронографической формуле возбужденного атома углерода – четыре неспаренных электрона, а у атома азота – три:

2. Два электрона, участвующие в образовании одной химической связи, называют общей электронной парой . Обычно до образования химической связи один из электронов этой пары принадлежал одному атому, а другой электрон – другому атому:

3. Электронное состояние атома, в котором соблюдается порядок заполнения электронных орбиталей: 1s 2 , 2s 2 , 2p 2 , 3s 2 , 3p 2 , 4s 2 , 3d 2 , 4p 2 и т.д., называют основным состоянием . В возбужденном состоянии один из валентных электронов атома занимает свободную орбиталь с более высокой энергией, такой переход сопровождается разъединением спаренных электронов. Схематически это записывают так:

Тогда как в основном состоянии было только два валентных неспаренных электрона, то в возбужденном состоянии таких электронов становится четыре.

5. Атомная орбиталь – это функция, которая описывает плотность электронного облака в каждой точке пространства вокруг ядра данного атома. На втором энергетическом уровне атома углерода четыре орбитали – 2s , 2р x , 2р y , 2р z . Эти орбитали различаются:
а) формой электронного облака (s – шар, р – гантель);
б) р -орбитали имеют разную ориентацию в пространстве – вдоль взаимно перпендикулярных осей x , y и z , их обозначают р x , р y , р z .

6. Гибридные орбитали отличаются от исходных (негибридных) орбиталей формой и энергией. Например, s -орбиталь – форма сферы, р – симметричная восьмерка, sp -гибридная орбиталь – асимметричная восьмерка.
Различия по энергии: E (s ) < E () < E (р ). Таким образом, sp -орбиталь – усредненная по форме и энергии орбиталь, полученная смешиванием исходных s - и p -орбиталей.

7. Для атома углерода известны три типа гибридизации: sp 3 , sp 2 и sp (см. текст урока 5 ).

9. -связь – ковалентная связь, образующаяся путем лобового перекрывания орбиталей по линии, соединяющей центры атомов.
-связь – ковалентная связь, образующаяся путем бокового перекрывания р -орбиталей по обе стороны от линии, соединяющей центры атомов.
-Связи показывают второй и третьей черточкой между соединенными атомами.

Гибридизацией называется гипотетический процесс смешения различного типа, но близких по энергии орбиталей данного атома с возникновением того же числа новых (гибридных 1) орбиталей, одинаковых по энергии и форме.

Гибридизация атомных орбиталей происходит при образовании ковалентных связей.

Гибридные орбитали имеют форму объёмной несимметричной восьмёрки, сильно вытянутой в одну сторону от атомного ядра: .

Такая форма обусловливает более сильное, чем в случае чистых атомных орбиталей, перекрывание гибридных орбиталей с орбиталями (чистых или гибридных) других атомов и приводит к образованию более прочных ковалентных связей. Поэтому энергия, затрачиваемая на гибридизацию атомных орбиталей, с избытком компенсируется выделением энергии за счёт образования более прочных ковалентных связей с участием гибридных орбиталей. Название гибридных орбиталей и тип гибридизации определяются числом и типом участвующих в гибридизации атомных орбиталей, например: sp -, sp 2 -, sp 3 -, sp 2 d - или sp 3 d 2 -гибридизация .

Направленность гибридных орбиталей, а следова­тельно, и геометрия молекулы зависят от типа гибридизации. На практике обычно решается обратная задача: вначале экспери­ментально устанавливается геометрия молекулы, после чего описывается тип и форма гибридных орбиталей, участвующих в её образовании.

sp -Гибридизация. Две гибридных sp - орбитали в результате взаимного отталкивания располагаются относительно атомного ядра таким образом, что угол между ними составляет 180° (рис. 7).

Рис. 7. Взаимное расположение в пространстве двух sp - гибридных орбиталей одного атома: а - поверхности, охватывающие области пространства, где вероятность пребывания электрона составляет 90 %; б - условное изображение.

В результате такого расположения гибридных орбиталей молекулы состава АХ 2 , где А является центральным атомом, имеют линейное строение , то есть ковалентные связи всех трёх атомов располагаются на одной прямой. Например, в состоянии sp - гибридизации находятся валентные орбитали атома бериллия в молекуле ВеС1 2 (рис. 8). Линейную конфигурацию вследствие sp - гибридизации валентных орбиталей атомов имеют также молекулы ВеН 2 , Ве(СН 3) 2 , ZnCl 2 , CO 2 , HC≡N и ряд других.

Рис. 8. Трёхатомная линейная молекула хлорида бериллия ВеС1 2 (в газообразном состоянии): 1 - 3р- орбиталь атома Cl; 2 - две sp - гибридные орбитали атома Be.

s р 2 -Гибридизация. Рассмотрим гибридизацию одной s - и двух р- орбиталей. В этом случае в результате линейной комбинации трёх орбиталей возникают три гибридные s р 2 -орбитали. Они располагаются в одной плоскости под углом 120° друг к другу (рис. 9). s р 2 -Гибридизация характерна для многих соединений бора, который, как показано выше, в возбуждённом состоянии имеет три неспаренных электрона: один s - и два р -электрона. При перекрывании s р 2 -орбиталей атома бора с орбиталями других атомов образуются три ковалентные связи, равноценные по длине и энергии. Молекулы, в которых валентные орбитали центрального атома находятся в состоянии s р 2 -гибридизации, имеют треугольную конфигурацию. Углы между ковалентными связями равны 120°. В состоянии s р 2 -гибридизации находятся валентные орбитали атомов бора в молекулах BF 3 , BC1 3 , атомов углерода и азота в анионах СО 3 2 - , NO 3 - .

Рис. 9. Взаимное расположение в пространстве трёх s р 2 -гибридных орбиталей.

s р 3 -Гибридизация. Очень большое распространение имеют вещества, в молекулах которых центральный атом содержит четыре s р 3 -орбитали, образующиеся в результате линейной комбина­ции одной s - и трёх р -орбиталей. Эти орбитали располагаются под углом 109˚28′ друг к другу и направлены к вершинам тетраэдра, в центре которого находится атомное ядро (рис. 10 а).

Образование четырёх равноценных ковалентных связей за счёт перекрывания s р 3 -орбиталей с орбиталями других атомов характерно для атомов углерода и других элементов IVA-группы; это обуславлиает тетраэдрическую структуру молекул (СН 4 , CC1 4 , SiH 4 , SiF 4 , GeH 4 , GeBr 4 и др).

Рис. 10. Влияние несвязывающих электронных пар на геометрию молекул:

a – метана (несвязывающих электронных пар нет);

б – аммиака (одна несвязывающая электронная пара);

в – воды (две несвязывающие пары).

Неподелённые электронные пары гибридных орбита лей . Во всех рассмотренных примерах гибридные орбитали были "заселены" одиночными электронами. Однако нередки случаи, когда гибридная орбиталь "заселена" электронной парой. Это оказывает влияние на геометрию молекул. Поскольку несвязывающая электронная пара испытывает воздействие ядра только своего атома, а связывающая электронная пара находится под действием двух атомных ядер, несвязывающая электронная пара находится ближе к атомному ядру, чем связывающая. В результате этого несвязывающая электронная пара сильнее отталкивает связывающие электронные пары, чем те отталкивают друг друга. Графически для наглядности большую отталкивающую силу, действующую между несвязывающей и связывающими электронными парами, можно изобразить большей по объёму электронной орбиталью несвязывающей пары. Несвязывающая электронная пара имеется, например, у атома азота в молекуле аммиака (рис. 10 б ). В результате взаимодействия со связывающими электронными парами валентные углы Н-N-Н сокращаются до 107,78° по сравнению со 109,5°, характерными для правильного тетраэдра.

Ещё большее отталкивание испытывают связывающие электронные пары в молекуле воды, где у атома кислорода имеются две несвязывающие электронные пары. В результате чего валентный угол Н-О-Н в молекуле воды равен 104,5° (рис. 10 в ).

Если несвязывающая электронная пара в результате образования ковалентной связи по донорно-акцепторному механизму превращается в связывающую, то силы отталкивания между этой связью и другими ковалентными связями в молекуле выравниваются; выравниваются и углы между этими связями. Это происходит, например, при образовании катиона аммония:

Участие в гибридизации d -орбиталей. Если энергия атомных d - орбиталей не очень сильно отличается от энергий s - и р- орбиталей, то они могут участвовать в гибридизации. Самым распространённым типом гибридизации с участием d - орбиталей является s р 3 d 2 - гибридизация, в результате которой образуются шесть равноценных по форме и энергии гибридных орбиталей (рис. 11 а ), расположенных под углом 90˚ друг к другу и направленных к вершинам октаэдра, в центре которого находится атомное ядро. Октаэдр (рис. 11 б ) является правильным восьмигранником: все рёбра в нём равной длины, все грани – правильные треугольники.

Рис. 11. s р 3 d 2 - Гибридизация

Реже встречается s р 3 d - гибридизация с образованием пяти гибридных орбиталей (рис. 12 а ), направленных к вершинам тригональной бипирамиды (рис. 12 б ). Тригональная бипирамида образуется соеинением двух равнобедренных пирамид общим основанием - правильным треугольником. Полужирными штрихами на рис. 12 б показаны рёбра равной длины. Геометрически и энергетически s р 3 d - гибридные орбитали неравноценны: три «экваториальные» орбитали направлены к вершинам правильного треугольника, а две «аксиальные» - вверх и вниз перпендикулярно плоскости этого треугольника (рис. 12в ). Углы между «экваториальными» орбиталями равны 120°, как при s р 2 - гибридизации. Угол между «аксиальной» и любой из «экваториальных» орбиталей равны 90°. Соответственно этому ковалентные связи, которые образуются с участием «экваториальных» орбиталей отличаются по длине и энергии от связей, в образовании которых участвуют «аксиальные» орбитали. Например, в молекуле РС1 5 «аксиальные» связи имеют длину 214 пм, а «экваториальные» - 202 пм.

Рис. 12. s р 3 d - Гибридизация

Таким образом, рассматривая ковалентные связи как результат перекрывания атомных орбиталей, можно объяснить геометрию возникающих при этом молекул и ионов, которая зависит от числа и типа атомных орбиталей, участвующих в образовании связей. Концепцию гибридизации атомных орбиталей, необходимо понимать, что гибридизация представляет собой условный приём, позволяющий наглядно объяснить геометрию молекулы посредством комбинации АО.

Концепция гибридизации

Концепция гибридизации валентных атомных орбиталей была предложена американским химиком Лайнусом Полингом для ответа на вопрос, почему при наличии у центрального атома разных (s, p, d) валентных орбиталей, образованные им связи в многоатомных молекулах с одинаковыми лигандами оказываются эквивалентными по своим энергетическим и пространственным характеристикам.

Представления о гибридизации занимают центральное место в методе валентных связей . Сама гибридизация не является реальным физическим процессом, а только удобной моделью, позволяющей объяснить электронное строение молекул, в частности гипотетические видоизменения атомных орбиталей при образовании ковалентной химической связи , в частности, выравнивание длин химических связей и валентных углов в молекуле.

Концепция гибридизации с успехом была применена для качественного описания простых молекул, но позднее была расширена и для более сложных. В отличие от теории молекулярных орбиталей не является строго количественной, например она не в состоянии предсказать фотоэлектронные спектры даже таких простых молекул как вода. В настоящее время используется в основном в методических целях и в синтетической органической химии .

Этот принцип нашёл отражение в теории отталкивания электронных пар Гиллеспи - Найхолма. Первое и наиболее важное правило которое формулировалось следующим образом:

«Электронные пары принимают такое расположение на валентной оболочке атома, при котором они максимально удалены друг от друга, т.е электронные пары ведут себя так, как если бы они взаимно отталкивались» .

Второе правило состоит в том, что «все электронные пары, входящие в валентную электронную оболочку, считаются расположенными на одинаковом расстоянии от ядра» .

Виды гибридизации

sp-гибридизация

Происходит при смешивании одной s- и одной p-орбиталей. Образуется две равноценные sp-атомные орбитали, расположенные линейно под углом 180 градусов и направленные в разные стороны от ядра атома углерода. Две оставшиеся негибридные p-орбитали располагаются во взаимно перпендикулярных плоскостях и участвуют в образовании π-связей, либо занимаются неподелёнными парами электронов.

sp 2 -гибридизация

Происходит при смешивании одной s- и двух p-орбиталей. Образуется три гибридные орбитали с осями, расположенными в одной плоскости и направленными к вершинам треугольника под углом 120 градусов. Негибридная p-атомная орбиталь перпендикулярна плоскости и, как правило, участвует в образовании π-связей

sp 3 -гибридизация

Происходит при смешивании одной s- и трех p-орбиталей, образуя четыре равноценные по форме и энергии sp3-гибридные орбитали. Могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Оси sp3-гибридных орбиталей направлены к вершинам правильного тетраэдра. Тетраэдрический угол между ними равен 109°28", что соответствует наименьшей энергии отталкивания электронов. Так же sp3-орбитали могут образовывать четыре σ-связи с другими атомами или заполняться неподеленными парами электронов.

Гибридизация и геометрия молекул

Представления о гибридизации атомных орбиталей лежат в основе теории отталкивания электронных пар Гиллеспи-Найхолма . Каждому типу гибридизации соответствует строго определённая пространственная ориентация гибридных орбиталей центрального атома, что позволяет её использовать как основу стереохимических представлений в неорганической химии.

В таблице приведены примеры соответствия наиболее распространённых типов гибридизации и геометрической структуры молекул в предположении, что все гибридные орбитали участвуют в образовании химических связей (отсутствуют неподелённые электронные пары) .

Тип гибридизации Число
гибридных орбиталей
Геометрия Структура Примеры
sp 2 Линейная BeF 2 , CO 2 , NO 2 +
sp 2 3 Треугольная BF 3 , NO 3 - , CO 3 2-
sp 3 4 Тетраэдрическая CH 4 , ClO 4 - , SO 4 2- , NH 4 +
dsp 2 4 Плоскоквадратная Ni(CO) 4 , XeF 4
sp 3 d 5 Гексаэдрическая PCl 5 , AsF 5
sp 3 d 2 6 Октаэдрическая SF 6 , Fe(CN) 6 3- , CoF 6 3-

Ссылки

Литература

  • Паулинг Л. Природа химической связи / Пер. с англ. М. Е. Дяткиной. Под ред. проф. Я. К. Сыркина. - М.; Л.: Госхимиздат, 1947. - 440 с.
  • Полинг Л. Общая химия. Пер. с англ. - М .: Мир, 1974. - 846 с.
  • Минкин В. И., Симкин Б. Я., Миняев Р. М. Теория строения молекул. - Ростов-на-Дону: Феникс, 1997. - С. 397-406. - ISBN 5-222-00106-7
  • Гиллеспи Р. Геометрия молекул / Пер. с англ. Е. З. Засорина и В. С. Мастрюкова, под ред. Ю. А. Пентина. - М .: Мир, 1975. - 278 с.

См. также

Примечания


Wikimedia Foundation . 2010 .

По характеру перекрывания различают сигма σ-и пи-связи - π. σ-связь- это связь, в которой перекрывание атомных орбиталей происходит вдоль оси, связывающей ядра атомов . Сигма связь может образовываться всеми типами орбиталей. Между двумя атомами в химической частице возможна только одна σ-связь . При перекрывании параллельных друг другу атомных орбиталей перпендикулярно оси связи образуются π-связи. Пи-связь: дополнительная к сигма связи. Одинарная связь – всегда сигма-связь. Двойная связь – состоит из 1 сигма и 1 пи-связи. Тройная связь: 1 сигма и 2 пи-связи.
Одинарная (σ) Двойная (σ+π) Тройная (σ + π + π)
С–С С–Н С–О H–Cl С=O С=С О=О С≡С С≡N N≡N


Гибридизация

Если атом связан с другими атомами ОДИНАКОВЫМИ СВЯЗЯМИ, но при их образовании участвуют орбитали разного типа, то используется метод ГИБРИДИЗАЦИИ.

Пример: Молекула СН 4 имеет форму правильного тетраэдра, в ней все 4 связи имеют одинаковую длину, прочность, находятся под одинаковыми углами друг к другу.

Однако у четырёхвалентного атома углерода электроны расположены на трёх р-орбиталях и одной s-орбитали. Они разные по энергии, форме и расположены в пространстве иначе.

Для объяснения используется понятие ГИБРИДИЗАЦИИ:

Из четырёх атомных орбиталей образуются 4 новых,

гибридных орбитали, которые в пространстве располагаются НА МАКСИМАЛЬНОМ УДАЛЕНИИ ДРУГ ОТ ДРУГА. Это правильный тетраэдр, углы между связями равны 109° 29´.

Так как в образовании четырёх связей участвуют одна s и три р-оболочки, то такой тип гибридизации обозначается sp 3

В зависимости от числа и типа орбиталей, которые принимают участие в гибридизации, отличают следующие типы гибридизации:

1) sp-гибридизация. Участвуют одна s-орбиталь и одна р-орбиталь. Молекула имеет линейную структуру, валентный угол – 180 0 .

2) sp 2 -гибридизация. Участвуют одна s-орбиталь и две р-орбитали. Молекула располагается в плоскости (концы гибридных орбиталей направлены к вершинам равностороннего треугольника), валентный угол – 120 0 .

3) sp 3 -гибридизация. Участвуют одна s-орбиталь и три р-орбитали. Молекула имеет тетраэдрическую форму, валентный угол – 109,28 0 .

Как определить тип гибридизации?

1. В гибридизации участвуют сигма-связи и НЕПОДЕЛЁННЫЕ ИОННЫЕ ПАРЫ.

2. Общее число участвующих орбиталей сигма-связей + электронных пар = числу гибридных орбиталей и определяет тип гибридизации.

Задание: определить тип гибридизации атома углерода в молекуле фосгена.

O=C – Cl

1) углерод образует 2 одинарные связи (это сигма-связи) и одну двойную связь (сигма+пи).Все 4 электрона углерода участвуют в образовании этих связей.

2) таким образом, в гибридизации примут участие ТРИ СИГМА-связи. Это sp 2 - гибридизация , молекула имеет форму плоского треугольника. Пи-связь располагается перпендикулярно плоскости этого треугольника.

Одна из задач химии - это изучение строения вещества, в том числе выяснение механизма образования различных соединений из простых веществ, образуемых атомами одного химического элемента. Особенности взаимодействия атомов, точнее, их разноименно заряженных компонентов - электронных оболочек и ядер, - описываются как различные типы химической связи. Так, вещества, образуются посредством ковалентной связи, для описания которой в 1931 году американским химиком Л. Полингом была предложена модель гибридизации атомных орбиталей.

Понятие о ковалентной связи

В тех случаях, когда в процессе взаимодействия происходит образование общей для двух атомов пары валентных электронных облаков, говорят о ковалентной связи. В результате ее возникновения формируется мельчайшая частица простого или сложного вещества - молекула.

Одной из особенностей ковалентной связи является ее направленность - следствие сложной формы электронных орбиталей p, d и f, которые, не обладая сферической симметрией, имеют определенную пространственную ориентацию. Еще одна важная особенность данного типа химической связи - насыщаемость, обусловленная ограниченным количеством внешних - валентных - облаков в атоме. Именно поэтому существование молекулы, например, H 2 O, возможно, а H 5 O - нет.

Типы ковалентной связи

Образование общих электронных пар может происходить различными способами. В механизме образования ковалентной связи важную роль играет характер перекрытия облаков и пространственная симметрия результирующего облака. По данному критерию Л. Полинг предложил различать следующие типы:

  • Сигма-связь (σ) отличается наибольшей степенью перекрытия по оси, проходящей через атомные ядра. Здесь плотность облака будет максимальной.
  • Пи-связь (π) образуется при боковом перекрывании, и электронное облако, соответственно, имеет наибольшую плотность вне соединяющей ядра оси.

Эти пространственные характеристики имеют большое значение постольку, поскольку они коррелируют с энергетическими параметрами ковалентной связи.

Особенности многоатомных молекул

Концепция гибридизации была введена Полингом для объяснения одной из особенностей ковалентных связей в многоатомных молекулах. Известно, что связи, образуемые центральным атомом в таких молекулах, оказываются одинаковыми по пространственным и энергетическим характеристикам. Это происходит вне зависимости от того, какие орбитали (s, p или d) участвуют в формировании общей электронной пары.

Очень удобным и наглядным примером для иллюстрации этого явления служит атом углерода. При вступлении в химическую связь атом в возбужденном состоянии имеет 4 валентных орбитали: 2s, 2p x , 2p y и 2p z . Три последних отличаются от орбитали 2s по энергии и форме. Тем не менее в молекуле, например, метана CH 4 все четыре связи совершенно равноценны и имеют валентные углы 109,5° (в то время как p-орбитали расположены под углами 90°). В других соединениях углерода встречаются валентные углы 120° и 180°; в молекулах, содержащих азот (аммиак NH 3) и кислород (вода H 2 O) эти углы составляют 107,5° и 104,5°. Возникновение подобных валентных углов также потребовало объяснения.

Суть явления

Идея гибридизации состоит в образовании усредненных орбиталей путем перекрывания электронных облаков разного типа с близкими значениями энергии - s, p, иногда d. Количество результирующих - гибридных - орбиталей соответствует числу перекрывающихся облаков. Поскольку орбиталь - это определяющая вероятность нахождения электрона в той или иной точке атома, гибридная орбиталь представляет собой наложение волновых функций, происходящее в результате электронных переходов при возбуждении атома. Оно приводит к возникновению равнозначных волновых функций, различающихся только направленностью.

Гибридные орбитали эквивалентны по энергии и имеют одинаковую форму в виде объемной восьмерки, имеющей сильную асимметрию относительно ядра. На гибридизацию затрачивается меньше энергии, чем выделяется при образовании прочной ковалентной связи с гибридными орбиталями, поэтому такой процесс энергетически выгоден, то есть наиболее вероятен.

гибридизации орбиталей и геометрия молекул

Возможны различные варианты перекрывания (смешения) внешних электронных облаков в атоме. Самыми распространенными являются следующие виды наложения орбиталей:

  • Sp 3 -гибридизация. Данный вариант реализуется при наложении одной s- и трех p-орбиталей. Результатом его становятся четыре гибридные орбитали, оси которых направлены для любой пары под углами 109,5°, соответствующим минимальному взаимному отталкиванию электронов. При вступлении этих орбиталей в σ-связи с другими атомами, формируется молекула тетраэдрической конфигурации, например, метан, этан C 2 H 6 (комбинация двух тетраэдров), аммиак, вода. В молекуле аммиака одна, а в молекуле воды - две из вершин тетраэдра заняты неподеленными электронными парами, что приводит к уменьшению валентного угла.
  • Sp 2 -гибридизация возникает при комбинации одной s- и двух p-орбиталей. В этом случае тройка гибридных орбиталей располагается под углами 120° в одной плоскости. Подобную треугольную форму имеют, например, молекулы трихлорида бора BCl 3 , находящего применение в различных технологиях. Другой пример - молекула этилена - формируется за счет дополнительной π-связи между атомами углерода, в которых по одной p-орбитали негибридные и ориентированы перпендикулярно плоскости, образуемой двумя треугольниками.
  • Sp-гибридизация происходит, когда смешиваются одна s- и одна p-орбиталь. Два гибридных облака располагаются под углом 180°, а молекула имеет линейную конфигурацию. Примерами могут служить молекулы хлорида бериллия BeCl 2 или ацетилена C 2 H 2 (в последней две негибридные p-орбитали углерода образуют дополнительные π-связи).

Существуют и более сложные варианты гибридизации атомных орбиталей: sp 3 d, sp 3 d 2 и другие.

Роль модели гибридизации

Концепция Полинга дает хорошее качественное описание строения молекул. Она удобна и наглядна, успешно объясняет некоторые особенности ковалентных соединений, такие как величина валентных углов или выравнивание длины химической связи. Однако количественная сторона модели не может считаться удовлетворительной, поскольку не позволяет делать многие важные предсказания, касающиеся физических эффектов, связанных с особенностями строения молекул, - например, молекулярных фотоэлектронных спектров. Сам автор концепции гибридизации уже в начале 1950-х годов отмечал ее недостатки.

Тем не менее в становлении современных представлений о строении вещества модель гибридизации атомных орбиталей сыграла большую роль. На основе ее были разработаны более адекватные концепции, например, теория отталкивания электронных пар. Поэтому, безусловно, модель гибридизации явилась важным этапом в развитии теоретической химии, а при описании некоторых аспектов электронной структуры молекул она вполне применима и в настоящее время.