Ремонт Дизайн Мебель

Поперечный изгиб стержня. Поперечный изгиб Техническая механика поперечный изгиб решения

Силы, действующие перпендикулярно к оси бруса и располо­женные в плос-кости, проходящей через эту ось, вызывают дефор­мацию, называемую попереч-ным изгибом . Если плоскость действия упомянутых сил главная плоскость, то имеет место прямой (плоский) поперечный изгиб. В противном случае изгиб называет­ся косым поперечным. Брус, подверженный преимущественно из­гибу, называется балкой 1 .

По существу поперечный изгиб есть сочетание чистого изги­ба и сдвига. В связи с искривлением поперечных сечений из-за неравномерности распределе-ния сдвигов по высоте возникает вопрос о возможности применения формулы нормального напряжения σ х , выведенной для чистого изгиба на основании гипотезы плоских сечений.

1 Однопролетная балка, имеющая по концам соответственно одну цилиндрическую неподвижную опору и одну цилиндрическую подвижную в направлении оси балки, называется простой . Балка с одним защемленным и другим свободным концом называется консолью . Простая балка, имеющая одну или две части, свешивающиеся за опору, называется консольной .

Если, кроме того, сечения взяты далеко от мест приложения нагрузки (на расстоянии, не меньшем половины высоты сечения бруса), то можно, как и в случае чистого изгиба, считать, что волокна не оказывают давления друг на друга. Значит, каждое волокно испытывает одноосное растяжение или сжатие.

При действии распределенной нагрузки поперечные силы в двух смежных сечениях будут отличаться на величину, рав­ную qdx . Поэтому искривления сечений будут также несколько отличаться. Кроме того, волокна будут оказывать давление друг на друга. Тщательное исследование вопроса показывает, что если длина бруса l достаточно велика по сравнению с его высотой h (l / h > 5), то и при распределенной нагрузке указанные факторы не оказывают существенного влияния на нормальные напряжения в поперечном сечении и потому в практических расчетах могут не учитываться.

а б в

Рис. 10.5 Рис. 10.6

В сечениях под сосредоточенными грузами и вблизи них распределение σ х отклоняется от линейного закона. Это отклонение, носящее местный характер и не сопровождающееся увеличением наибольших напряжений (в крайних волокнах), на практике обычно не принимают во внимание.

Таким образом, при поперечном изгибе (в плоскости ху ) нор­мальные напряжения вычисляются по формуле

σ х = [М z (x )/I z ]y .

Если проведем два смежных сечения на участке бруса, свободном от нагрузки, то поперечная сила в обоих сечениях будет одинакова, а значит, одинаково и искривление сечений. При этом какой-либо отрезок волокна ab (рис.10.5) переместится в новое положение a"b" , не претерпев дополнительного удлинения, и следовательно, не меняя величину нормального напряжения.

Определим касательные напряжения в поперечном сечении через парные им напряжения, действующие в продольном сечении бруса.

Выделим из бруса элемент длиной dx (рис. 10.7 а). Проведём горизонта-льное сечение на расстоянии у от нейтральной оси z , разделившее элемент на две части (рис. 10.7) и рассмотрим равновесие верхней части, имеющей основа-

ние шириной b . В соответствии с законом парности касательных напряжений, напряжения действующие в продольном сечении равны напряжениям, действующим в поперечном сечении. С учётом этого в предположении о том, что касательные напряжения в площадке b распределены равномерно ис-пользуем условие ΣХ = 0, получим:

N * - (N * +dN *)+

где: N * - равнодействующая нормальных сил σв левом поперечном сече-нии элемента dx в пределах “отсечённой” площадки А * (рис. 10.7 г):

где: S=- статический момент “отсечённой” части поперечного сече-ния (заштрихованная площадь на рис. 10.7 в). Следовательно, можно записать:

Тогда можно записать:

Эта формула была получена в XIX веке русским ученым и инженером Д.И. Журавским и носит его имя. И хотя эта формула приближенная, так как усредняет напряжение по ширине сечения, но полученные результаты расчета по ней, неплохо согласуются с экспериментальными данными.

Для того, чтобы определить касательные напряжения в произвольной точке сечения отстоящей на расстоянии y от оси z следует:

Определить из эпюры величину поперечной силы Q, действующей в сечении;

Вычислить момент инерции I z всего сечения;

Провести через эту точку плоскость параллельную плоскости xz и определить ширину сечения b ;

Вычислить статический момент отсеченной площади Sотносительно главной центральной оси z и подставить найденные величины в формулу Жура-вского.

Определим в качестве примера касательные напряжения в прямоуголь-ном поперечном сечении (рис. 10.6, в). Статический момент относительно оси z части сечения выше линии 1-1, на которой определяется напряжения запишем в виде:

Он изменяется по закону квадратной параболы. Ширина сечения в для прямоугольного бруса постоянна, то параболическим будет и закон изменения касательных напряжений в сечении (рис.10.6, в). При y =и у = − каса-тельные напряжения равны нулю, а на нейтральной оси z они достигают наибольшего значения.

Для балки круглого поперечного сечения на нейтральной оси имеем.

Прямой изгиб – это вид деформации, при котором в поперечных сечениях стержня возникают два внутренних силовых фактора: изгибающий момент и поперечная сила.

Чистый изгиб – это частный случай прямого изгиба, при котором в поперечных сечениях стержня возникает только изгибающий момент, а поперечная сила равна нулю.

Пример чистого изгиба – участок CD на стержне AB . Изгибающий момент – это величина Pa пары внешних сил, вызывающая изгиб. Из равновесия части стержня слева от поперечного сечения mn следует, что внутренние усилия, распределенные по этому сечению, статически эквивалентны моменту M , равному и противоположно направленному изгибающему моменту Pa .

Чтобы найти распределение этих внутренних усилий по поперечному сечению, необходимо рассмотреть деформацию стержня.

В простейшем случае стержень имеет продольную плоскость симметрии и подвергается действию внешних изгибающих пар сил, находящихся в этой плоскости. Тогда изгиб будет происходить в той же плоскости.

Ось стержня nn 1 – это линия, проходящая через центры тяжести его поперечных сечений.

Пусть поперечное сечение стержня – прямоугольник. Нанесем на его грани две вертикальные линии mm и pp . При изгибе эти линии остаются прямолинейными и поворачиваются так, что остаются перпендикулярными продольным волокнам стержня.

Дальнейшая теория изгиба основана на допущении, что не только линии mm и pp , но все плоское поперечное сечение стержня остается после изгиба плоским и нормальным к продольным волокнам стержня. Следовательно, при изгибе поперечные сечения mm и pp поворачиваются относительно друг друга вокруг осей, перпендикулярных плоскости изгиба (плоскости чертежа). При этом продольные волокна на выпуклой стороне испытывают растяжение, а волокна на вогнутой стороне – сжатие.

Нейтральная поверхность – это поверхность, не испытывающая деформации при изгибе. (Сейчас она расположена перпендикулярно чертежу, деформированная ось стержня nn 1 принадлежит этой поверхности).

Нейтральная ось сечения – это пересечение нейтральной поверхности с любым с любым поперечным сечением (сейчас тоже расположена перпендикулярно чертежу).

Пусть произвольное волокно находится на расстоянии y от нейтральной поверхности. ρ – радиус кривизны изогнутой оси. Точка O – центр кривизны. Проведем линию n 1 s 1 параллельно mm . ss 1 – абсолютное удлинение волокна.

Относительное удлинение ε x волокна

Из этого следует, что деформации продольных волокон пропорциональны расстоянию y от нейтральной поверхности и обратно пропорциональны радиусу кривизны ρ .

Продольное удлинение волокон выпуклой стороны стержня сопровождается боковым сужением , а продольное укорочение вогнутой стороны – боковым расширением , как в случае простого растяжения и сжатия. Из-за этого вид всех поперечных сечений меняется, вертикальные стороны прямоугольника становятся наклонными. Деформация в боковом направлении z :



μ – коэффициент Пуассона.

Вследствие такого искажения все прямые линии поперечного сечения, параллельные оси z , искривляются так, чтоб остаться нормальными к боковым сторонам сечения. Радиус кривизны этой кривой R будет больше, чем ρ в таком же отношении, в каком ε x по абсолютной величине больше чем ε z , и мы получим

Этим деформациям продольных волокон отвечают напряжения

Напряжение в любом волокне пропорционально его расстоянию от нейтральной оси n 1 n 2 . Положение нейтральной оси и радиус кривизны ρ – две неизвестные в уравнении для σ x – можно определить из условия, что усилия, распределенные по любому поперечному сечению, образуют пару сил, которая уравновешивает внешний момент M .

Все вышесказанное также справедливо, если стержень не имеет продольную плоскость симметрии, в которой действует изгибающий момент, лишь бы только изгибающий момент действовал в осевой плоскости, которая заключает в себе одну из двух главных осей поперечного сечения. Эти плоскости называются главными плоскостями изгиба .

Когда имеется плоскость симметрии и изгибающий момент действует в этой плоскости, прогиб происходит именно в ней. Моменты внутренних усилий относительно оси z уравновешивают внешний момент M . Моменты усилий относительно оси y взаимно уничтожаются.

Классификация видов изгиба стержня

Изгибом называют такой вид деформации, при котором в поперечных сечениях стержня возникают изгибающие моменты. Стержень, работающий на изгиб, принято называть балкой. Если изгибающие моменты - единственные внутренние силовые факторы в поперечных сечениях, то стержень испытывает чистый изгиб. Если же изгибающие моменты возникают совместно с поперечными силами, то такой изгиб называют поперечным.

На изгиб работают балки, оси, валы и другие детали конструкций.

Введем некоторые понятия. Плоскость, проходящая через одну из главных центральных осей сечения и геометрическую ось стержня, называется главной плоскостью. Плоскость, в которой действуют внешние нагрузки, вызывающие изгиб балки, называется силовой плоскостью. Линия пересечения силовой плоскости с плоскостью поперечного сечения стержня носит название силовой линии. В зависимости от взаимного расположения силовой и главных плоскостей балки различают прямой или косой изгиб. Если силовая плоскость совпадает с одной из главных плоскостей, то стержень испытывает прямой изгиб (рис. 5.1, а ), если же не совпадает - косой (рис. 5.1, б).

Рис. 5.1. Изгиб стержня: а - прямой; б - косой

С геометрической точки зрения изгиб стержня сопровождается изменением кривизны оси стержня. Первоначально прямолинейная ось стержня становится криволинейной при его изгибе. При прямом изгибе изогнутая ось стержня лежит в силовой плоскости, при косом - в плоскости, отличной от силовой.

Наблюдая за изгибом резинового стержня, можно заметить, что часть его продольных волокон растягивается, а другая часть сжимается. Очевидно, между растянутыми и сжатыми волокнами стержня существует слой волокон, не испытывающих ни растяжения, ни сжатия, - так называемый нейтральный слой. Линия пересечения нейтрального слоя стержня с плоскостью его поперечного сечения называется нейтральной линией сечения.

Как правило, действующие на балку нагрузки можно отнести к одному из трех видов: сосредоточенные силы Р, сосредоточенные моменты М распределенные нагрузки интенсивностью ц (рис. 5.2). Часть I балки, расположенную между опорами, называют пролетом, часть II балки, расположенную по одну сторону от опоры, - консолью.

Как и в § 17, предположим, что поперечное сечение стержня имеет две оси симметрии, одна из которых лежит в плоскости изгиба.

В случае поперечного изгиба стержня в поперечном сечении его возникают касательные напряжения, и при деформации стержня оно не остается плоским, как в случае чистого изгиба. Однако для бруса сплошного поперечного сечения влиянием касательных напряжений при поперечном изгибе можно пренебречь и приближенно принять, что так же, как и в случае чистого изгиба, поперечное сечение стержня при его деформации остается плоским. Тогда выведенные в § 17 формулы для напряжений и кривизны остаются приближенно справедливыми. Они являются точными для частного случая постоянной по длине стержня поперечной силы 1102).

В отличие от чистого изгиба при поперечном изгибе изгибающий момент и кривизна не остаются постоянными по длине стержня. Основная задача в случае поперечного изгиба - определение прогибов. Для определения малых прогибов можно воспользоваться известной приближенной зависимостью кривизны изогнутого стержня от прогиба 11021. На основании этой зависимости кривизна изогнутого стержня х с и прогиб V е , возникшие вследствие ползучести материала, связаны соотношением х с = = dV

Подставив в это соотношение кривизну по формуле (4.16), устанавливаем, что

Интегрирование последнего уравнения дает возможность получить прогиб, возникший вследствие ползучести материала балки.

Анализируя приведенное выше решение задачи о ползучести изогнутого стержня, можно заключить, что оно полностью эквивалентно решению задачи об изгибе стержня из материала, у которого диаграммы растяжения-сжатия могут быть аппроксимированы степенной функцией. Поэтому определение прогибов, возникших из-за ползучести, в рассматриваемом случае может быть произведено и при помощи интеграла Мора для определения перемещения стержней, выполненных из материала, не подчиняющегося закону Гука

Эпюры нормальных напряжений действующих по площадкам 1-2 и 3-4 при положительном значении М, показаны на рис. 39.7. По этим же площадкам действуют и касательные напряжения также показанные на рис. 39.7. Величина этих напряжений изменяется по высоте сечения.

Обозначим величину касательного напряжения в нижних точках площадок 1-2 и 3-4 (на уровне ). По закону парности касательных напряжений следует, что такие же по величине касательные напряжения действуют по нижней площадке 1-4 выделенного элемента. Нормальные напряжения по этой площадке считаются равными нулю, так как в теории изгиба предполагается, что продольные волокна балки не оказывают друг на друга давления.

Площадку 1-2 или 3-4 (рис. 39.7 и 40.7), т. е. часть поперечного сечения, расположенную выше уровня (выше площадки 1-4), называют отсеченной частью поперечного сечения. Ее площадь обозначим

Составим уравнение равновесия для элемента 1-2-3-4 в виде суммы проекций всех приложенных к нему сил на ось балки:

Здесь - равнодействующая элементарных сил возникающих по площадке 1-2 элемента; - равнодействующая элементарных сил возникающих по площадке 3-4 элемента; - равнодействующая элементарных касательных сил, возникающих по площадке 1-4 элемента; - ширина поперечного сечения балки на уровне у

Подставим в уравнение (27.7) выражения по формулам (26.7):

Но на основании теоремы Журавского [формула (6.7)]

Интеграл представляет собой статический момент площади относительно нейтральной оси поперечного сечения балки.

Следовательно,

По закону парности касательных напряжений напряжения в точках поперечного сечения балки, отстоящих на расстояние от нейтральной оси, равны (по абсолютной величине) т. е.

Таким образом, величины касательных напряжений в поперечных сечениях балки и в сечениях ее плоскостями, параллельными нейтральному слою, определяются по формуле

Здесь Q - поперечная сила в рассматриваемом поперечном сечении балки; - статический момент (относительно нейтральной оси) отсеченной части поперечного сечения, расположенной по одну сторону от уровня, на котором определяются касательные напряжения; J - момент инерции всего поперечного сечения относительно нейтральной оси; - ширина поперечного сечения балки на том уровне, на котором определяются касательные напряжения .

Выражение (28.7) называется формулой Журавского.

Определение касательных напряжений по формуле (28.7) производится в следующем порядке:

1) проводится поперечное сечение балки;

2) для этого поперечного сечения определяются значения поперечной силы Q и величина J момента инерции сечения относительно главной центральной оси, совпадающей с нейтральной осью;

3) в поперечном сечении на уровне, для которого определяются касательные напряжения, параллельно нейтральной оси проводится прямая, отсекающая часть сечения; длина отрезка этой прямой, заключенного внутри контура поперечного сечения, представляет собой ширину , входящую в знаменатель формулы (28.7);

4) вычисляется статический момент S отсеченной (расположенной по одну сторону от прямой, указанной в п. 3) части сечения относительно нейтральной оси;

5) по формуле (28.7) определяется абсолютное значение касательного напряжения . Знак касательных напряжений в поперечном сечении балки совпадает со знаком поперечной силы, действующей в этом сечении. Знак же касательных напряжений в площадках, параллельных нейтральному слою, противоположен знаку поперечной силы.

Определим в качестве примера касательные напряжения в прямоугольном поперечном сечении балки, изображенном на рис. 41.7, а. Поперечная сила в этом сечении действует параллельно оси у и равна

Момент инерции поперечного сечения относительно оси

Для определения касательного напряжения в некоторой точке С проведем через эту точку прямую 1-1, параллельную оси (рис. 41.7, а).

Определим статический момент S части сечения, отсеченной прямой 1-1, относительно оси . За отсеченную можно принимать как часть сечения, расположенную выше прямой 1-1 (заштрихованную на рис. 41.7, а), так и часть, расположенную ниже этой прямой.

Для верхней части

Подставим в формулу (28.7) значения Q, S, J и b:

Из этого выражения следует, что касательные напряжения изменяются по высоте поперечного сечения по закону квадратной параболы. При напряжения Наибольшие напряжения имеются в точках нейтральной оси, т. е. при

где - площадь поперечного сечения.

Таким образом, в случае прямоугольного сечения наибольшее касательное напряжение в 1,5 раза больше среднего его значения, равного Эпюра касательных напряжений, показывающая их изменение по высоте сечения балки, изображена на рис. 41.7, б.

Для проверки полученного выражения [см. формулу (29.7)] подставим его в равенство (25.7):

Полученное тождество свидетельствует о правильности выражения (29.7).

Параболическая эпюра касательных напряжений, показанная на рис. 41.7, б, является следствием того, что при прямоугольном сечении статический момент отсеченной части сечения изменяется с изменением положения прямой 1-1 (см. рис. 41.7, а) по закону квадратной параболы.

При сечениях любой другой формы характер изменения касательных напряжений по высоте сечения зависит от того, по какому закону изменяется отношение при этом, если на отдельных участках высоты сечения ширина b постоянна, то напряжения на этих участках изменяются по закону изменения статического момента

В точках поперечного сечения балки, наиболее удаленных от нейтральной оси, касательные напряжения равны нулю, так как при определении напряжений в этих точках в формулу (28.7) подставляется значение статического момента отсеченной части сечения, равное нулю.

Величина 5 достигает максимума для точек, расположенных на нейтральной оси, однако касательные напряжения при сечениях с переменной шириной b могут не быть максимальными на нейтральной оси. Так, например, эпюра касательных напряжений для сечения, изображенного на рис. 42.7, а имеет вид, показанный на рис. 42.7, б.

Касательные напряжения, возникающие при поперечном изгибе в плоскостях, параллельных нейтральному слою, характеризуют собой силы взаимодействия между отдельными слоями балки; эти силы стремятся сдвинуть соседние слои друг относительно друга в продольном направлении.

Если между отдельными слоями балки не имеется достаточной связи, то такой сдвиг произойдет. Например, доски, положенные друг на друга (рис. 43.7, а), будут сопротивляться внешней нагрузке, как целый брус (рис. 43.7, б), пока усилия по плоскостям соприкасания досок не превысят сил трения между ними. Когда же силы трения будут превзойдены, то доски сдвинутся одна по другой, как это показано на рис. 43.7, в. При этом прогибы досок резко увеличатся.

Касательные напряжения, действующие в поперечных сечениях балки и в сечениях, параллельных нейтральному слою, вызывают деформации сдвига, в результате которых прямые углы между этими сечениями искажаются, т. е. перестают быть прямыми. Наибольшие искажения углов имеются в тех точках поперечного сечения, в которых действуют наибольшие касательные напряжения; у верхнего и нижнего краев балки искажения углов отсутствуют, так как касательные напряжения там равны нулю.

В результате деформаций сдвига поперечные сечения балки при поперечном изгибе искривляются. Однако это существенно не влияет на деформации продольных волокон, а следовательно, и на распределение нормальных напряжений в поперечных сечениях балки.

Рассмотрим теперь распределение касательных напряжений в тонкостенных балках с поперечными сечениями, симметричными относительно оси у, по направлению которой действует поперечная сила Q, например, в балке двутаврового сечения, изображенной на рис. 44.7, а.

Для этого по формуле Журавского (28.7) определим касательные напряжения в некоторых характерных точках поперечного сечения балки.

В верхней точке 1 (рис. 44.7, а) касательные напряжения так как вся площадь поперечного сечения расположена ниже этой точки, а потому статический момент 5 относительно оси (части площади сечения, расположенной выше точки 1) равен нулю.

В точке 2, расположенной непосредственно над линией, проходящей через нижнюю грань верхней полки двутавра, касательные напряжения, подсчитанные по формуле (28.7),

Между точками 1 и 2 напряжения [определяемые по формуле (28.7)] изменяются по квадратной параболе, как для прямоугольного сечения. В стенке двутавра в точке 3, расположенной непосредственно под точкой 2, касательные напряжения

Так как ширина b полки двутавра значительно больше толщины d вертикальной стенки, то эпюра касательных напряжений (рис. 44.7, б) имеет резкий скачок в уровне, соответствующем нижней грани верхней полки. Ниже точки 3 касательные напряжения в стенке двутавра изменяются по закону квадратной параболы, как для прямоугольника. Наибольшие касательные напряжения возникают на уровне нейтральной оси:

Эпюра касательных напряжений, построенная по полученным значениям и , изображена на рис. 44.7, б; она симметрична относительно ординаты .

Согласно этой эпюре, в точках, расположенных у внутренних граней полок (например, в точках 4 на рис. 44.7, а), действуют касательные напряжения перпендикулярные к контуру сечения. Но, как уже отмечалось, такие напряжения около контура сечения возникать не могут. Следовательно, предположение о равномерном распределении касательных напряжений по ширине b поперечного сечения, положенное в основу вывода формулы (28.7), неприменимо к полкам двутавра; оно неприменимо и к некоторым элементам других тонкостенных балок.

Касательные напряжения ту в полках двутавра определить методами сопротивления материалов нельзя. Эти напряжения весьма невелики по сравнению с напряжениями ту в стенке двутавра. Поэтому их не учитывают и эпюру касательных напряжений строят только для стенки двутавра, как показано на рис. 44.7, в.

В некоторых случаях, например при расчете составных балок, определяют величину Т касательных сил, действующих в сечениях балки, параллельных нейтральному слою и приходящихся на единицу ее длины. Эту величину найдем, умножив значение напряжения на ширину сечения b:

Подставим значение по формуле (28.7):