Ремонт Дизайн Мебель

Урок "Теория множеств. Пересечение и объединение множеств". Пересечение и объединение множеств

Решение некоторых математических задач предполагает нахождение пересечения и объединения числовых множеств. В статье ниже рассмотрим эти действия подробно, в том числе, на конкретных примерах. Полученный навык будет применим для решения неравенств с одной переменной и систем неравенств.

Простейшие случаи

Когда мы говорим о простейших случаях в рассматриваемой теме, то имеем в виду нахождение пересечения и объединения числовых множеств, представляющих из себя набор отдельных чисел. В подобных случаях будет достаточно использования определения пересечения и объединения множеств.

Определение 1

Объединение двух множеств – это множество, в котором каждый элемент является элементом одного из исходных множеств.

Пересечение множеств – это множество, которое состоит из всех общих элементов исходных множеств.

Из указанных определений логически следуют следующие правила:

Чтобы составить объединение двух числовых множеств, имеющих конечное количество элементов, необходимо записать все элементы одного множества и дописать к ним недостающие элементы из второго множества;

Чтобы составить пересечение двух числовых множеств, необходимо элементы первого множества один за другим проверить на принадлежность второму множеству. Те из них, которые окажутся принадлежащими обоим множествам и будут составлять пересечение.

Полученное согласно первому правилу множество будет включать в себя все элементы, принадлежащие хотя бы одному из исходных множеств, т.е. станет объединением этих множеств по определению.

Множество, полученное согласно второму правилу, будет включать в себя все общие элементы исходных множеств, т.е. станет пересечением исходных множеств.

Рассмотрим применение полученных правил на практических примерах.

Пример 1

Исходные данные: числовые множества А = { 3 , 5 , 7 , 12 } и В = { 2 , 5 , 8 , 11 , 12 , 13 } . Необходимо найти объединение и пересечение исходных множеств.

Решение

  1. Определим объединение исходных множеств. Запишем все элементы, к примеру, множества А: 3 , 5 , 7 , 12 . Добавим к ним недостающие элементы множества В: 2 , 8 , 11 и 13 . В конечном итоге имеем числовое множество: { 3 , 5 , 7 , 12 , 2 , 8 , 11 , 13 } . Упорядочим элементы полученного множества и получим искомое объединение: А ∪ B = { 2 , 3 , 5 , 7 , 8 , 11 , 12 , 13 } .
  2. Определим пересечение исходных множеств. Согласно правилу, переберем один за другим все элементы первого множества A и проверим, входят ли они во множество B . Рассмотрим первый элемент - число 3: он не принадлежит множеству B , а значит не будет являться элементом искомого пересечения. Проверим второй элемент множества A , т.е. число 5: оно принадлежит множеству B , а значит станет первым элементом искомого пересечения. Третий элемент множества A – число 7 . Оно не является элементом множества B , а, следовательно, не является элементом пересечения. Рассмотрим последний элемент множества A: число 1 . Оно также принадлежит и множеству B , и соответственно станет одним из элементов пересечения. Таким образом, пересечение исходных множеств – множество, состоящее из двух элементов: 5 и 12 , т.е. А ∩ В = { 5 , 12 } .

Ответ: объединение исходных множеств – А ∪ B = { 2 , 3 , 5 , 7 , 8 , 11 , 12 , 13 } ; пересечение исходных множеств - А ∩ В = { 5 , 12 } .

Все вышесказанное относится к работе с двумя множествами. Что же касается нахождения пересечения и объединения трех и более множеств, то решение этой задачи возможно свести к последовательному нахождению пересечения и объединения двух множеств. Например, чтобы определить пересечение трех множеств A , В и С, возможно сначала определить пересечение A и B , а затем найти пересечение полученного результата с множеством C . На примере это выглядит так: пусть будут заданы числовые множества: А = { 3 , 9 , 4 , 3 , 5 , 21 } , В = { 2 , 7 , 9 , 21 } и С = { 7 , 9 , 1 , 3 } . Пересечение первых двух множеств составит: А ∩ В = { 9 , 21 } , а пересечение полученного множества с множеством А ∩ В = { 9 , 21 } . В итоге: А ∩ В ∩ С = { 9 } .

Однако на практике, чтобы найти объединение и пересечение трех и более простейших числовых множеств, которые состоят из конечного количества отдельных чисел, удобнее применять правила, аналогичные указанным выше.

Т.е., чтобы найти объединение трех и более множеств указанного типа, необходимо к элементам первого множества добавить недостающие элементы второго множества, затем – третьего и т.д. Для пояснения возьмем числовые множества: А = { 1 , 2 } , В = { 2 , 3 } , С = { 1 , 3 , 4 , 5 } . К элементам первого множества A добавится число 3 из множества B , а затем – недостающие числа 4 и 5 множества C . Таким образом, объединение исходных множеств: А ∪ В ∪ С = { 1 , 2 , 3 , 4 , 5 } .

Что же касается решения задачи на нахождение пересечения трех и более числовых множеств, которые состоят из конечного количества отдельных чисел, необходимо одно за другим перебрать числа первого множества и поэтапно проверять, принадлежит ли рассматриваемое число каждому из оставшихся множеств. Для пояснения рассмотрим числовые множества:

А = { 3 , 1 , 7 , 12 , 5 , 2 } В = { 1 , 0 , 2 , 12 } С = { 7 , 11 , 2 , 1 , 6 } D = { 1 , 7 , 15 , 8 , 2 , 6 } .

Найдем пересечение исходных множеств. Очевидно, что множество B имеет меньше всего элементов, поэтому именно их мы будем проверять, определяя, входят ли они в остальные множества. Число 1 множества B является элементом и прочих множеств, а значит является первым элементом искомого пересечения. Второе число множества B – число 0 – не является элементом множества A , а, следовательно, не станет элементом пересечения. Продолжаем проверку: число 2 множества B является элементом прочих множеств и становится еще одной частью пересечения. Наконец, последний элемент множества B – число 12 – не является элементом множества D и не является элементом пересечения. Таким образом, получаем: A ∩ B ∩ C ∩ D = { 1 , 2 } .

Координатная прямая и числовые промежутки как объединение их частей

Отметим на координатной прямой произвольную точку, например, с координатой - 5 , 4 . Указанная точка разобьет координатную прямую на два числовых промежутка – два открытых луча (-∞, -5,4) и (-5,4, +∞) и собственно точку. Нетрудно увидеть, что в соответствии с определением объединения множеств любое действительное число будет принадлежать объединению (- ∞ , - 5 , 4) ∪ { - 5 , 4 } ∪ (- 5 , 4 , + ∞) . Т.е. множество всех действительных чисел R = (- ∞ ; + ∞) возможно представить в виде полученного выше объединения. И наоборот, полученное объединение будет являться множеством всех действительных чисел.

Отметим, что заданную точку возможно присоединить к любому из открытых лучей, тогда он станет простым числовым лучом (- ∞ , - 5 , 4 ] или [ - 5 , 4 , + ∞) . При этом множество R будет описываться следующими объединениями: (- ∞ , - 5 , 4 ] ∪ (- 5 , 4 , + ∞) или (- ∞ , - 5 , 4) ∪ [ - 5 , 4 , + ∞) . .

Подобные рассуждения действительны не только относительно точки координатной прямой, но и относительно точки на любом числовом промежутке. Т.е., если мы возьмем любую внутреннюю точку любого произвольного промежутка, его возможно будет представить, как объединение его частей, полученных после деления заданной точкой, и самой точки. К примеру, задан полуинтервал (7 , 32 ] и точка 13 , принадлежащая этому числовому промежутку. Тогда заданный полуинтервал можно представить в виде объединения (7 , 13) ∪ { 13 } ∪ (13 , 32 ] и обратно. Мы можем включить число 13 в любой из промежутков и тогда заданное множество (7 , 32 ] можно представить, как (7 , 13 ] ∪ (13 , 32 ] или (7 , 13 ] ∪ (13 , 32 ] . Также мы можем взять в качестве исходных данных не внутреннюю точку заданного полуинтервала, а его конец (точку с координатой 32), тогда заданный полуинтервал можно представить, как объединение интервала (7 , 32) и множества из одного элемента { 32 } . Таким образом: (7 , 32 ] = (7 , 32) ∪ { 32 } .

Еще один вариант: когда берется не одна, а несколько точек на координатной прямой или числовом промежутке. Эти точки разобьют координатную прямую или числовой промежуток на несколько числовых промежутков, а объединение этих промежутков будут составлять исходные множества. К примеру, на координатной прямой заданы точки с координатами - 6 , 0 , 8 , которые разобьют ее на промежутки: (- ∞ , - 6) , (- 6 , 0) , (0 , 8) , (8 , + ∞) . При этом множество всех действительных чисел, олицетворением чего и является координатная прямая, возможно представить в виде объединения полученных промежутков и указанных чисел:

(- ∞ , - 6) ∪ { - 6 } ∪ (- 6 , 0) ∪ { 0 } ∪ (0 , 8) ∪ { 8 } ∪ (8 , + ∞) .

С темой нахождения пересечения и объединения множеств возможно наглядно разобраться, если использовать изображения заданных множеств на координатной прямой (если только речь – не о простейших случаях, рассмотренных в самом начале статьи).

Мы рассмотрим общий подход, который позволяет определить результат пересечения и объединения двух числовых множеств. Опишем подход в виде алгоритма. Рассматривать его шаги будем постепенно, каждый раз приводя очередной этап решения конкретного примера.

Пример 2

Исходные данные: заданы числовые множества А = (7 , + ∞) и В = [ - 3 , + ∞) . Необходимо найти пересечение и объединение данных множеств.

Решение

  1. Изобразим заданные числовые множества на координатных прямых. Их необходимо расположить друг над другом. Для удобства принято считать, что точки начала отсчета заданных множеств совпадают, и остается сохранным расположение точек друг относительно друга: любая точка с большей координатой лежит правее точки с меньшей координатой. При этом, если нам интересно объединение множеств, то координатные прямые объединяют слева квадратной скобкой совокупности; если интересует пересечение, то – фигурной скобкой системы.

В нашем примере для записи пересечения и объединения числовых множеств имеем: и

Изобразим еще одну координатную прямую, расположив ее под уже имеющимися. Она понадобится для отображения искомого пересечения или объединения. На этой координатной прямой отмечают все граничные точки исходных числовых множеств: сначала черточками, а позже, после выяснения характера точек с этими координатами, черточки будет заменены выколотыми или невыколотыми точками. В нашем примере это точки с координатами - 3 и 7 .

и

Точки, которые изображены на нижней координатной прямой в предыдущем шаге алгоритма, дают возможность рассматривать координатную прямую как набор числовых промежутков и точек (об этом мы говорили выше). В нашем примере координатную прямую представим в виде набора пяти числовых множеств: (- ∞ , - 3) , { - 3 } , (- 3 , 7) , { 7 } , (7 , + ∞) .

Теперь необходимо поочередно проверить принадлежность каждого из записанных множеств искомому пересечению или объединению. Получаемые выводы поэтапно отмечаются на нижней координатной прямой: когда промежуток является частью пересечения или объединения, над ним рисуется штриховка. Когда точка входит в пересечение или объединение, то штрих заменяется на сплошную точку; если точка не является частью пересечения или объединения – ее делают выколотой. В этих действиях нужно придерживаться таких правил:

Промежуток становится частью пересечения, если он одновременно является частью множества A и множества B (или иными словами – если есть штриховка над этим промежутком на обеих координатных прямых, отображающих множества А и B);

Точка становится частью пересечения, если она является одновременно частью каждого из множеств А и В (иными словами – если точка является невыколотой или внутренней точкой какого-либо интервала обоих числовых множеств A и B);

Промежуток становится частью объединения, если он является частью хотя бы одного из множеств A или B (иными словами – если присутствует штриховка над этим промежутком хотя бы на одной из координатных прямых, отображающих множества A и B .

Точка становится частью объединения, если она является частью хотя бы одного из множеств A и B (иными словами – точка является невыколотой или внутренней точкой какого-либо интервала хотя бы одного из множеств A и B).

Кратко резюмируя: пересечением числовых множеств A и B служит пересечение всех числовых промежутков множеств A и B , над которыми одновременно присутствует штриховка, и всех отдельных точек, принадлежащих и множеству А, и множеству В. Объединением числовых множеств A и B служит объединение всех числовых промежутков, над которыми присутствует штриховка хотя бы у одного из множеств A или B , а также всех невыколотых отдельных точек.

  1. Вернемся к примеру, определим пересечение заданных множеств. Для этого поочередно проверим множества: (- ∞ , - 3) , { - 3 } , (- 3 , 7) , { 7 } , (7 , + ∞) . Начнем с множества (- ∞ , - 3) , наглядно выделив его на чертеже:

Этот промежуток не будет включен в пересечение, потому что не является частью ни множества A , ни множества B (нет штриховки). И так наш чертеж сохраняет свой изначальный вид:

Рассмотрим следующее множество { - 3 } . Число - 3 является частью множества B (невыколотой точкой), но не входит в состав множества A , а потому не станет частью искомого пересечения. Соответственно на нижней координатной прямой точку с координатой - 3 делаем выколотой:

Оцениваем следующее множество (- 3 , 7) .

Оно является частью множества B (над интервалом присутствует штриховка), но не входит в множество A (над интервалом штриховка отсутствует): не будет входить в искомое пересечение, а значит на нижней координатной прямой не появляется никаких новых отметок:

Следующее множество на проверку - { 7 } . Оно является составом множества B (точка с координатой 7 является внутренней точкой промежутка [ - 3 , + ∞)), но не является частью множества A (выколотая точка), таким образом, рассматриваемый промежуток не станет частью искомого пересечения.. Отметим точку с координатой 7 как выколотую:

И, наконец, проверяем оставшийся промежуток (7 , + ∞) .

Промежуток входит в оба множества A и B (над промежутком присутствует штриховка), следовательно, становится частью пересечения. Штрихуем место над рассмотренным промежутком:

В конечном счете на нижней координатной прямой образовалось изображение искомого пересечения заданных множеств. Очевидно, что оно является множеством всех действительных чисел больше числа 7 , т.е.: А ∩ В = (7 , + ∞) .

  1. Следующим шагом определим объединение заданных множеств A и B . Последовательно проверим множества (- ∞ , - 3) , { - 3 } , (- 3 , 7) , { 7 } , (7 , + ∞) , устанавливая факт включения или невключения их в искомое объединение.

Первое множество (- ∞ , - 3) не является частью ни одного из исходных множеств A и B (над промежутками нет штриховок), следовательно, множество (- ∞ , - 3) не войдет в искомое объединение:

Множество { - 3 } входит в множество B , а значит будет входить в искомое объединение множеств A и B:

Множество (- 3 , 7) является составной частью множества B (над интервалом присутствует штриховка) и становится элементом объединения множеств A и B:

Множество 7 входит в числовое множество B , поэтому войдет и в искомое объединение:

Множество (7 , + ∞) , являясь элементом обоих множеств А и В одновременно, становится еще одной частью искомого объединения:

По итоговому изображению объединения исходных множеств А и В получаем: А ∩ В = [ - 3 , + ∞) .

Имея некий практический опыт применения правил нахождения пересечений и объединений множеств, описанные проверки легко проводятся устно, что позволяет быстро записывать конечный результат. Продемонстрируем на практическом примере, как выглядит его решение без детальных пояснений.

Пример 3

Исходные данные: множества А = (- ∞ , - 15) ∪ { - 5 } ∪ [ 0 , 7) ∪ { 12 } и В = (- 20 , - 10) ∪ { - 5 } ∪ (2 , 3) ∪ { 17 } . Необходимо определить пересечение и объединение заданных множеств.

Решение

Отметим заданные числовые множества на координатных прямых, чтобы иметь возможность получить иллюстрацию искомых пересечения и объединения:

Ответ: А ∩ В = (- 20 , - 15) ∪ { - 5 } ∪ (2 , 3) ; А ∪ В = (- ∞ , - 10) ∪ { - 5 } ∪ [ 0 , 7 ] ∪ { 12 , 17 } .

Также понятно, что при достаточном понимании процесса указанный алгоритм возможно подвергнуть оптимизации. К примеру, в процессе нахождения пересечения можно не тратить время на проверку всех промежутков и множеств, представляющих собой отдельные числа, ограничившись рассмотрением только тех промежутков и чисел, которые составляют множество А или В. Прочие промежутки в любом случае не войдут в пересечение, т.к. не являются частью исходных множеств. Составим иллюстрацию сказанного на практическом примере.

Пример 4

Исходные данные: множества А = { - 2 } ∪ [ 1 , 5 ] и B = [ - 4 , 3 ] .

Необходимо определить пересечение исходных множеств.

Решение

Геометрически изобразим числовые множества А и В:

Граничные точки исходных множеств разобьют числовую прямую на несколько множеств:

(- ∞ , - 4) , { - 4 } , (- 4 , - 2) , { - 2 } , (- 2 , - 1) , { 1 } , (1 , 3) , { 3 } , (3 , 5) , { 5 } , (5 , + ∞) .

Легко заметить, что числовое множество A можно записать, объединив некоторые из перечисленных множеств, а именно: { - 2 } , (1 , 3) , { 3 } и (3 , 5) . Достаточно будет проверить эти множества на их включенность также в множество В для того, чтобы найти искомое пересечение. Те, что войдут в множество В и станут элементами пересечения. Проведем проверку.

Совершенно понятно, что { - 2 } является частью множества B , ведь точка с координатой - 2 – внутренняя точка отрезка [ - 4 , 3) . Интервал (1 , 3) и множество { 3 } также входят в множество В (над интервалом присутствует штриховка, а точка с координатой 3 является для множества В граничной и невыколотой). Множество (3 , 5) не будет элементом пересечения, т.к. не входит в множество В (над ним не присутствует штриховка). Отметим все вышесказанное на чертеже:

В итоге искомым пересечением двух заданных множеств будет объединение множеств, которое мы запишем так: { - 2 } ∪ (1 , 3 ] .

Ответ: А ∩ В = { - 2 } ∪ (1 , 3 ] .

В заключении статьи обговорим еще, как решить задачу о нахождении пересечения и объединения нескольких множеств (более 2). Сведем ее, как рекомендовалось ранее, к необходимости определения пересечения и объединения первых двух множеств, затем полученного результата с третьим множеством и так далее. А можно использовать описанный выше алгоритм с единственным только отличием, что проверку вхождения промежутков и множеств, представляющих собой отдельные числа, необходимо проводить не по двум, а всем заданным множествам. Рассмотрим на примере.

Пример 5

Исходные данные: множества А = (- ∞ , 12 ] , В = (- 3 , 25 ] , D = (- ∞ , 25) ꓴ { 40 } . Необходимо определить пересечение и объединение заданных множеств.

Решение

Отображаем заданные числовые множества на координатных прямых и ставим с левой от них стороны фигурную скобку, обозначая пересечение, а также квадратную, обозначая объединение. Ниже отобразим координатные прямые с отмеченными штрихами граничными точками числовых множеств:

Таким образом, координатная прямая представлена следующими множествами: (- ∞ , - 3) , { - 3 } , (- 3 , 12) , { 12 } , (12 , 25) , { 25 } , (25 , 40) , { 40 } , (40 , + ∞) .

Начинаем искать пересечения, поочередно проверяя записанные множества на принадлежность каждому из исходных. Во все три заданных множества входит интервал (- 3 , 12) и множество { - 12 } : они и станут элементами искомого пересечения. Таким образом, получим: A ∩ B ∩ D = (- 3 , 12 ] .

Объединение заданных множеств составят множества: (- ∞ , - 3) - элемент множества А; { - 3 } – элемент множества А; (- 3 , 12) – элемент множества А; { 12 } – элемент множества А; (12 , 25) – элемент множества В; { 25 } – элемент множества В и { 40 } – элемент множества D . Таким образом, получим: A ∪ B ∪ D = (- ∞ , 25 ] ∪ { 40 } .

Ответ: A ∩ B ∩ D = (- 3 , 12 ] ; A ∪ B ∪ D = (- ∞ , 25 ] ∪ { 40 } .

Отметим также, что искомое пересечение числовых множеств часто является пустым множеством. Происходит это в тех случаях, когда в заданные множества не включены элементы, одновременно принадлежащие им всем.

Пример 6

Исходные данные: А = [ - 7 , 7 ] ; В = { - 15 } ∪ [ - 12 , 0) ∪ { 5 } ; D = [ - 15 , - 10 ] ∪ [ 10 , + ∞) ; Е = (0 , 27) . Определить пересечение заданных множеств.

Решение

Отобразим исходные множества на координатных прямых и штрихами граничные точки этих множеств на дополнительной прямой.

Отмеченные точки разобьют числовую прямую на множества: (- ∞ , - 15) , { - 15 } , (- 15 , - 12) , { - 12 } , (- 12 , - 10) , { - 10 } , (- 10 , - 7) , { - 7 } , (- 7 , 0) , { 0 } , (0 , 5) , { 5 } , (5 , 7) , { 7 } , (7 , 10) , { 10 } , (10 , 27) , { 27 } , (27 , + ∞) .

Ни одно из них не является одновременно элементом всех исходных множеств, следовательно, пересечение заданных множеств есть пустое множество.

Ответ: A ∩ B ∩ D ∩ Е = Ø .

Множества удобно изображать в виде кругов, которые называют кругами Эйлера.

На рисунке множество пересечения множеств X и Y закрашено в оранжевый цвет.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

1 Пересечение множеств

Пересечением множеств А и В называют множество, в которое входят те и только те элементы, которые одновременно принадлежат множествам А и В. Обозначение: А ∩ В.

Так любой элемент х из множества А ∩ В обладает свойством

«х € А и х € В», то данное определение пересечения двух множеств можно записать в таком виде: А ∩ В = {х | х€А ^ х€В}.

Если множества А и В не имеют общих элементов, то эти множества не пересекаются. А ∩ В = Ǿ.

Если же множества имеет хотя бы один общий элемент, то говорят, что множества А и В пересекаются или что пересечение множеств Аи В не пусто.

Операция множеств обладает рядом свойств:

1. Пересечение множеств коммутативно: для любых множеств А и В имеем А∩В = В ∩ А

2. Пересечение множеств ассоциативно: для любых множеств А,В,С имеем

(А∩В)∩С=А∩(В∩С). Это позволяет записывать выражение А∩В∩С без скобок и находить пересечение любого числа множеств.

Сравнивая области заштрихованные дважды на рис, приходим к выводу, что множества (А∩В)∩С и А∩(В∩С) равны.

2. Объединение множеств.

Объединением двух множеств А и В называется множество, состоящее из элементов, которые принадлежат хотя бы одному из этих множеств. Обозначение:A U B.

Пример: А = {m, n, p, k, l} и В = {p, r, s, n} является множество A U B ={m, n, p, k, l, r, s}

На рисунке множество A U B изображено заштрихованной областью.

По определению в объединение множеств Аи В могут входить элементы из А, не принадлежащие множеству В, элементы из В, не принадлежащие А, и элементы, принадлежащие множествам А и В одновременно.

Так как любой элемент х из множества A U B обладает свойством «х€А или х€В», то определение объединения двух множеств можно записать так:

A U B = {х | х € А v x € B}.

Операция объединения множеств обладает такими свойствами:

1. Для любых множеств А и В имеем А U В = В U А (коммутативность).

2. Для любых множеств А,В,С имеем (А U В) U С=А U (В U С). (ассоциативность) Это свойство позволяет писать выражение (А U В) U С без скобок и говорить про объединение любого числа множеств.

В частности, для любого множества А имеем:

Связь между операциями пересечения и объединения множеств отражают свойства дистрибутивности.

4. Для любых множеств А, В, С справедливы равенства:

Свойства дистрибутивности иллюстрируются на диаграммах Эйлера –Венна. на рис приведены диаграммы соответствующие левой и правой части соотношения 4б). На первой диаграмме вертикальной штриховкой отмечено множество А, горизонтальной – множество В∩С. Вся заштрихованная область представляет собой множество AU(B∩C). На второй диаграмме вертикальной штриховкой отмечено множество AUB, горизонтальной – множество AUC. Область заштрихованная дважды, изображает множество (АUB)∩(AUC).

Рассматривая полученные области, приходим к выводу, что множества AU(B∩C) и (АUB)∩(AUC) равны.

Пересечением двух множеств называют множество, состоящее из всех общих элементов этих множеств.

Пример :
Возьмем числа 12 и 18. Найдем их делители, обозначив все множество этих делителей соответственно буквами А и B:
А = {1, 2, 3, 4, 6, 12},
B = {1, 2, 3, 6, 9, 18}.

Мы видим, что у чисел 12 и 18 есть общие делители: 1, 2, 3, 6. Обозначим их буквой C:
C = {1, 2, 3, 6).

Множество C и является пересечением множеств А и B. Пишут это так:
А ∩ B = C.

Если два множества не имеют общих элементов, то пересечением этих множеств является пустое множество .
Пустое множество обозначают знаком Ø, а используют такую запись:

X ∩ Y = Ø.

Объединение двух множеств – это множество, состоящее из всех элементов этих множеств.

Для примера вернемся к числам 12 и 18 и множеству их элементов A и B. Выпишем сначала элементы множества А, затем добавим к ним те элементы множества B, которых нет во множестве А. Мы получим множество элементов, которым обладают А и B в совокупности. Обозначим его буквой D:

D = {1, 2, 3, 4, 6, 12, 9, 18).

Множество D и является объединением множеств A и B. Пишется это так:

D = A UB.

Основные понятия теории множеств.
Пересечение и объединение множеств

Цели: ознакомить учащихся с основными понятиями теории множеств, операциями над множествами (пересечение и объединение множеств); формировать умения задавать множества и проводить над ними основные операции.

Ход урока

I. Организационный момент.

II. Проверочная работа.

В а р и а н т 1

b = 5,82 ± 0,01.

2. Представьте каждое из чисел 2 и 14 в виде десятичной дроби. Округлите полученные дроби до сотых и найдите абсолютную и относительную погрешности приближения.

В а р и а н т 2

1. Запишите в виде двойного неравенства u = 6,75 ± 0,01.

2. Представьте каждое из чисел 6 и 18 в виде десятичной дроби. Округлите полученные дроби до десятых и найдите абсолютную и относительную погрешности приближения.

III. Объяснение нового материала.

Наиболее ответственным шагом при ознакомлении учащихся с теоретико-множественными понятиями является введение неопределяемых понятий множества, его элемента и принадлежности.

I б л о к.

1. О с н о в н ы е п о н я т и я.

Одно из основных понятий современной математики – множество . Это понятие обычно принимается за первичное и поэтому не определяется через другие.

Когда в математике говорят о множестве (чисел, точек, функций и т. д.), то объединяют эти объекты в одно целое – множество, состоящее из этих объектов (чисел, точек, функций и т. д.). Основатель теории множеств, немецкий математик Георг Кантор (1845–1918), выразил эту мысль следующим образом: «Множество есть многое, мыслимое как единое, целое».

Множество – это совокупность объектов, объединённых между собой по какому-либо признаку.

Слово «множество» в обычном смысле всегда связывается с большим числом предметов. Например, мы говорим, что в лесу множество деревьев, но если перед домом два дерева, в обычной речи не говорят, что перед домом «множество деревьев».

Математическое же понятие множества не связывается обязательно с большим числом предметов. В математике удобно рассматривать и «множества», содержащие 3; 2 или 1 предмет и даже «множество», не содержащее ни одного предмета (пустое множество). Например, мы говорим о множестве решений уравнения до того, как узнаем, сколько оно имеет решений.

Произвольные множества обозначают большими латинскими буквами А , В , С , ... Пустое множество , то есть множество, которое не имеет элементов, обозначается символом .

О предметах, составляющих множество, говорят, что они принадлежат этому множеству, или являются его элементами. Элементы множества обозначают малыми латинскими буквами а , b , с , ... или одной какой-нибудь буквой с индексом, например а 1 , а 2 , ... , а п .

Предложение «предмет а принадлежит множеству А », или «предмет а – элемент множества А », обозначают символом а А .

2. С п о с о б ы з а д а н и я м н о ж е с т в:

1) Множество может быть задано непосредственным перечислением всех его элементов (в произвольном порядке). В таком случае названия всех элементов множества записываются в строчку, отделяются между собой запятыми и заключаются в фигурные скобки.

Н а п р и м е р: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} – множество цифр десятичной системы счисления.

Необходимо различать объекты, обозначаемые символами а и {а }. Символом а означается предмет, символом {а} – множество, состоящее из одного элемента а (единичное множество) . Перечислением всех элементов можно задать лишь конечное множество. Такие множества, как, например, множество всех натуральных (N ) или всех целых чисел (Z ), нельзя задать таким способом, так как мы не можем перечислить все N и все Z – таких чисел бесконечное множество .

2) Имеется другой (универсальный) способ задания множества в том смысле, что этим способом может быть задано не только конечное, но и бесконечное множество. Множество может быть задано указанием характеристического свойства, то есть такого свойства, которым обладают все элементы этого множества и не обладает ни один предмет, не являющийся его элементом.

Н а п р и м е р: {x | x – делятся на 10};

A = {a | a – число, которое меньше, чем 100}.

3. У п р а ж н е н и я:

а) Назовите известные вам множества людей (например, команда).

б) Запишите множества, элементами которых являются:

1) планеты Солнечной системы;

2) столицы государств;

3) все двузначные числа;

4) числа, делящиеся на 7.

в) Пусть А – множество чисел, на которые делится 100 без остатка. Верна ли запись:

1) 5 А ; 2) 12 А ; 3) 7 А ; 4) 4 А?

г) Пусть даны множества А = {а а – число, кратное двум} и В =
= {b b – число, кратное шести}.

В ы п и ш и т е:

1) два элемента, принадлежащих множеству А , но не принадлежащих множеству В ;

2) два элемента, принадлежащих и множеству А, и множеству В ;

3) два элемента не принадлежащих ни множеству А , ни множеству В .

II б л о к.

1. Р а в е н с т в о м н о ж е с т в.

Очень важной особенностью множества является то, что в нём нет одинаковых элементов, вернее, что все они отличны друг от друга. Это значит, можно записать сколько угодно одинаковых элементов, но выступать они будут как один. То есть множество не может содержать одни и те же элементы в нескольких вариантах. Предположим, что мы записали множество {7, 9, 7, 11, 7}. В этом множестве элемент 7 повторяется несколько раз, но мы его будем рассматривать как один. Поэтому наше множество будет {7, 9, 11}.

Рассмотрим два множества: {а , b , с } и {b , а , с }. Эти множества состоят из одних и тех же элементов, хотя они записаны в разном порядке. Такие множества называются равными. Итак, два множества равны , если содержат одни и те же элементы.

2. П е р е с е ч е н и е м н о ж е с т в.

Рассмотрим два множества: А = {1, 2, 3, 4, 5, 6} и В = {5, 6, 7, 8, 9}. Составим новое множество С , в которое запишем общие элементы А и В . Общими у них являются элементы 5 и 6, значит, С = {5, 6}. Множество С является пересечением множеств А и В , обозначается так:

О п р е д е л е н и е: Пересечением двух множеств называют множество, состоящее из всех общих элементов этих множеств.

3. О б ъ е д и н е н и е м н о ж е с т в.

Возьмём те же два множества: А = {1, 2, 3, 4, 5, 6} и В = {5, 6, 7, 8, 9}. Составим теперь множество D таким образом, чтобы в него вошли все элементы, которые принадлежат хотя бы одному из множеств А и В .

Здесь следует ознакомить учащихся с приёмом задания объединения множеств: сперва мы выписываем все элементы множества А , а затем те элементы множества В , которые не принадлежат множеству А . Получим: D = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Множество D является объединением множеств А и В , обозначается так:

О п р е д е л е н и е: Объединением двух множеств называют множество, состоящее из всех элементов, принадлежащих хотя бы одному из этих множеств.

4. У п р а ж н е н и я:

а) Верна ли запись:

1) {8, 12, 16, 20} = {12, 20, 16, 18};

2) {m , n , p , q } = {p , m , q , n };

3) {3, 4, 3, 5} = {3, 4, 5}?

б) Запишите множества, равные:

1) {2, 3, 2, 4, 2, 5}; 2) {f , f , f , m , m , m }.

в) Даны множества А = {3, 4, 5}, В = {5, 6, 7, 8}, С = {2, 4, 8} и K = {1, 3, 5, 7}. Найдите:

1) А K ; 5) А K ;

2) А С ; 6) А С ;

3) А В ; 7) А В ;

4) А K В ; 8) А K В .

IV. Формирование умений и навыков.

На этом уроке отрабатываются умения задавать множества, правильно оформляя запись, а также находить пересечение и объединение множеств, пользуясь введенными определениями.

Р е ш е н и е

х = {2, 3, 5, 7, 11, 13, 17, 19};

у = {10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.

х у = {11, 13, 17, 19};

х у = {2, 3, 5, 7, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20}.В .

V. Итоги урока.

В о п р о с ы у ч а щ и м с я:

– Какие способы задания множеств существуют?

– Какие два множества являются равными?

– Как называется множество, в котором нет ни одного элемента?

– Что называется пересечением двух множеств?

– Что называется объединением двух множеств?

Домашнее задание.

1. № 800, № 801 (б), № 802 (б).

2. Укажите наибольший и наименьший элементы пересечения множества двузначных чисел, кратных 9, и множества нечётных двузначных чисел.