Ремонт Дизайн Мебель

Природные и синтетические волокна. Текстильные волокна и нити. Классификация. Искусственные волокна. Виды и названия синтетических тканей


Синтетическими волокнами называют волокна, при получении которых происходит синтез простых молекул. К синтетическим волокнам относятся: лавсан, нитрон, капрон, хлорин, винол, полиэтиленовые, полипропиленовые и другие волокна. В зависимости от сырья получаются такие полимеры: полиамидные, полиэфирные, полиакрилонитрильные, поливинилхлоридные, поливинилспиртовые, полиуретановые. Особенностью создания химического волокна является то, что процесс формирования одновременно является и его прядением.

Полиамидные волокна . Наиболее широко распространяемые полиамидные капроновые волокна. Исходным сырьём для получения капронового волокна является бензол и фенол (продукты переработки каменного угля). На химических заводах перерабатываются в капролактан . Из капронолактана перерабатывается капроновая смола. Это расплав, который продавливается щель из фильеры выходит в виде тонких струек, которые застывают при обдувании воздухом. На одной машине может находиться 60 — 100 фильер. В зависимости от вида химического волокна фильера имеет различное количество отверстий различной величины. Волокна вытягиваются, скручиваются, обрабатываются горячей водой для фиксации структуры. Также разработаны способы получения полого капронового волокна, которое профилированное и высокоусадочное. Применяется для изготовления ткани чулочно — носочных изделий, трикотажа, швейных ниток и технического назначения. Процессы изготовления анида и энанта аналогичны с изготовлением капронового волокна.

Свойства полиамидных волокон: легкость, упругость, высокая прочность при растяжении, высокая химическая стойкость, морозостойкость, стойкость к действию микроорганизмов и плесени. Волокна растворяются в концентрированных кислотах и феноле.

Горят волокна голубоватым пламенем образуя в конце оплавленный бурый шарик.

К полиамидным относится шелок — который применяется для изготовления легких платьевых и блузочных тканей и мегалоп — химически модифицированное волокно, гигроскопическое, прочное, стойкое к истиранию, придаёт ткани повышенный мерцающий блеск. Полиамидная профилированная нить — трилобал применяется для тканей шелкового типа, близких по внешнему виду к натуральному шёлку.

Полиэфирные волокна . Лавсан вырабатывается из продуктов переработки нефти. Не меняет своих свойств в мокром состоянии.

Свойства волокон лавсана: обладают легкостью, упругостью, молестойкие, стойкие к гниению, разрушается кислотами и щелочами, гигроскопичность очень низкая 0,4%. При влажной тепловой обработке выдерживают температуру 140ºС. При внесении в пламя лавсан плавится, затем медленно горит жёлтым коптящим пламенем.

Полиуретановые волокна . По своим физико-механическим свойствам относится к эланомерам, т.е. имеет высокие показатели эластического восстановления. Разрывное удлинение 600% — 800%. При снятии нагрузки сразу эластичность восстанавливается на 90%, а через минуту — 95%. Эти волокна малогигроскопичные — 1 — 1,5%, термостойкие, стойкие к истиранию, хорошо окрашиваются. Применяются для изготовления трикотажа, лент в спортивных корсетных, и лечебных эластичных изделиях.

Полиакрилонитринные волокна (ПАН). Нитрон вырабатывается из продуктов переработки каменного угля, нефти и газа. На ощупь более мягкие и шелковистые, чем лавсан и капрон. По прочности более чем в два раза меньше прочности капронового и лавсанового волокна. Удлинение при разрыве 16 — 22%, гигроскопичность 1,5%.

Нитрон имеет ряд ценных свойств : стойкий к действию минеральных кислот, щелочей, органических растворителей при химчистке, стоек к действию бактерий, плесени, моли. По теплозащитным свойствам нитрон превосходит шерсть. При температуре 200 — 250 °С, нитрон размягчается. Горит ярким, коптящим пламенем со вспышками.

Поливинилхлоридные волокна (ПВХ). Хлорин вырабатывается из этилена или ацетилена. Обладает стойкостью к действию воды, кислот, щелочей, окислителей, не гниёт, не имеет блеска.

По теплозащитным свойствам не уступает шерсти. Прочность в мокром состоянии не меняется, имеет невысокую стойкость к светопогоде. Влажно-тепловая обработка — при 70%. Недостаток — низкая теплостойкость. Хлорин не горит, не поддерживает горение, при внесении в пламя чувствуется запах дуста, спекается. Хлорин электризуется, поэтому применяется для лечебного белья, а также для получения рельефных шёлковых тканей, искусственного меха и тканей спецодежды (рыбаков, лесников, пожарных и др.).

Стойкость к агрессивным средам, высокая механическая прочность, эластичность и другте ценные качества сделали синтетическе волокна незаменимыми для современного текстильного производства.


Получаемые из несуществующих в природе полимеров, полученных путем синтеза из природных низкомолекулярных соединений. Разнообразие исходного сырья и разнообразие свойств исходных синтетических полимеров позволяют получать волокна с различными, заранее заданными, характеристиками.

Возможность заранее задать необходимые свойства ткани имеет очень большое значение для современной текстильной промышленности. Изделия нового поколения более адаптированы к потребностям человеческого организма, обладают многофункциональными и комфортными свойствами.

Синтетические волокна активно используются для производства спецодежды, одежды для экстремальных условий и спорта.

В настоящее время существует несколько тысяч видов синтетических волокон, и их число растет с каждым годом. Самые распространенные будут рассмотрены ниже.

Полиуретановые волокна

По механическим показателям полиуретановые волокна во многом сходны с резиновыми нитями, т.к. способны к высокоэластичным обратимым деформациям. Такие волокна придают текстильным материалам высокую эластичность, устойчивость к истиранию, упругость, формоустойчивость, несминаемость. Они редко применяются в чистом виде. Наиболее распространено их участие в ткани в качестве каркасных нитей, вокруг которых навеваются другие нити. Недостатком таких волокон является низкая термоустойчивость. Уже при 120 С полиуретановые волокна в растянутом состоянии значительно теряют прочность.

Основными представителями полиуретановых волокон являются такие торговые названия, как эластан, лайкра, спандекс, неолан и др.

Полиамидные волокна

Отличительное свойство полиамидных волокон – повышенная устойчивость к истиранию, превосходящая хлопок в 10 раз, шерсть в 20 раз, а вискозу в 50. Также отличаются высокой формоустойчивостью. Из недостатков необходимо отметить низкую устойчивость к свету и действию пота. На свету они желтеют и становятся ломкими. Кроме того, такие волокна обладают невысокой гигроскопичностью и подвержены сильному пиллингу. Однако многие их недостатки могут быть устранены путем введения различных стабилизаторов. Часто полиамидные волокна добавляются в смесовые ткани (с хлопком, шерстью, вискозой) в части, не превышающей 10-15 %, что практически не ухудшает гигиенических свойств изделий, но зато значительно улучшает механические. Волокна широко применяются в производстве чулочно-носочных и трикотажных изделий , для производства швейных ниток и галантереи.

Основные торговые названия: капрон, анид, нейлон, tactel, meryl и др.

Полиэфирные волокна

Основным свойством полиэфирных волокон является повышенная термостойкость, превосходящая показатели всех природных и большинства химических волокон. Выпуск таких волокон в настоящее время занимает лидирующее положение среди химических волокон благодаря их высоким физико-механическим показателям. Они обладают большой упругостью и высокой устойчивостью к истиранию. Ткани из таких волокон хорошо держат форму, не мнутся, имеют малую степень усадки. Недостатками являются повышенная жесткость, склонность к пилингу, сильная электризуемость и низкая гигроскопичность. Недостатки устраняются путем модификации исходного сырья. Из полиэфирных волокон в смеси с натуральными материалами (хлопок, шерсть, лен), а также вискозой успешно производятся сорочечные, плательные, костюмные и пальтовые ткани, а также искусственный мех. При этом устраняется такой недостаток как сминаемость, увеличивается прочность к истиранию при сохранении гигиенических свойств.

Торговые названия: лавсан, полиэстр, терилен и др.

Полиакрилонитрильные волокна

Такие волокна называют «искусственной шерстью» в силу близости их механических свойств. Обладают высокой светостойкостью и термостойкостью, достаточной прочностью, хорошо держат форму. Из недостатков стоит отметить низкую гигроскопичность, склонность к образованию пиллей, жесткость и электризуемость. Однако все недостатки устраняются путем модификации. В швейном деле применяются в основном при пошиве верхней одежды в смеси с шерстью, искусственного меха.

Торговые названия: нитрон, акрил, акрилан, кашмилон и др.

Полиолефиновые волокна

Отличительной особенностью полипропиленовых волокон является их низкая плотность. Это самые легкие из всех видов волокон. Кроме того, гигроскопичность их почти равна нулю, поэтому они не тонут в воде. Такие волокна обладают хорошими теплоизоляционными свойствами. Недостатком является низкая термостойкость (115 С), который может быть нивелирован модификацией. Оптимальным является создание двухслойных материалов, в которых нижний слой выполняется из полиолефиновых волокон, а верхний – из гигроскопичных целлюлозных волокон. Такая технология позволяет нижнему слою оставаться сухим, но отводить влагу в гигроскопичный верхний слой. Часто применяется при пошиве нижнего белья, спортивных изделий, а также чулочно-носочных изделий с повышенными гигиеническими характеристиками.

Торговые названия: геркулон, ульстрен, найден, мераклон и др.

Полиэтиленовое волокно используется в основном для технических целей. Торговые названия: спектра, дайнема, текмилон.

Поливинилхлоридные волокна

Поливинилхлоридные волокна обладают высокой химической стойкостью, низкой электропроводностью и очень низкой термостойкостью (разрушаются при 100 С). При трении волокно приобретает высокий электростатический заряд, что наделяет изготовленное из него белье лечебными свойствами при лечении таких заболеваний, как радикулит, артрит. Кроме того, для таких волокон характерна высокая степень усадки после термообработки. Это свойство используется для получения красивой рельефной поверхности ткани . Помимо этого, поливинилхлоридные волокна применяются при изготовлении ворса ковров, искусственного меха, искусственной кожи.

XIX век ознаменовался важными открытиями в науке и технике. Резкий технический бум коснулся практически всех сфер производств, многие процессы были автоматизированы и перешли на качественно новый уровень. Техническая революция не обошла стороной и текстильное производство - в 1890 году во Франции впервые было получено волокно, изготовленное с применением химических реакций. С этого события началась история химических волокон.

Виды, классификация и свойства химических волокон

Согласно классификации все волокна подразделяются на две основные группы: органические и неорганические. К органическим относятся искусственные и синтетические волокна. Разница между ними состоит в том, что искусственные создаются из природных материалов (полимеров), но с помощью химических реакций. Синтетические волокна в качестве сырья используют синтетические полимеры, процессы же получения тканей принципиально не отличаются. К неорганическим волокнам относят группу минеральных волокон, которые получают из неорганического сырья.

В качестве сырья для искусственных волокон используются гидратцеллюлозные, ацетилцеллюлозные и белковые полимеры, для синтетических - карбоцепные и гетероцепные полимеры.

Благодаря тому, что при производстве химических волокон используются химические процессы, свойства волокон, в первую очередь механические, можно изменять, если использовать разные параметры процесса производства.

Главными отличительными свойствами химических волокон, по сравнению с натуральными, являются:

  • высокая прочность;
  • способность растягиваться;
  • прочность на разрыв и на длительные нагрузки разной силы;
  • устойчивость к воздействию света, влаги, бактерий;
  • несминаемость.

Некоторые специальные виды обладают устойчивостью к высоким температурам и агрессивным средам.

ГОСТ химические нити

По Всероссийскому ГОСТу классификация химических волокон достаточно сложная.

Искусственные волокна и нити, согласно ГОСТу, делятся на:

  • волокна искусственные;
  • нити искусственные для кордной ткани;
  • нити искусственные для технических изделий;
  • технические нити для шпагата;
  • искусственные текстильные нити.

Синтетические волокна и нити, в свою очередь, состоят из следующих групп: волокна синтетические, нити синтетические для кордной ткани, для технических изделий, пленочные и текстильные синтетические нити.

Каждая группа включает в себя один или несколько подвидов. Каждому подвиду присвоен свой код в каталоге.

Технология получения, производства химических волокон

Производство химических волокон имеет большие преимущества по сравнению с натуральными волокнами:

  • во-первых, их производство не зависит от сезона;
  • во-вторых, сам процесс производства хоть и достаточно сложный, но гораздо менее трудоемкий;
  • в-третьих, это возможность получить волокно с заранее установленными параметрами.

С технологической точки зрения, данные процессы сложные и всегда состоят из нескольких этапов. Сначала получают исходный материал, потом преобразовывают его в специальный прядильный раствор, далее происходит формирование волокон и их отделка.

Для формирования волокон используются разные методики:

  • использование мокрого, сухого или сухо-мокрого раствора;
  • применение резки металлической фольгой;
  • вытягивание из расплава или дисперсии;
  • волочение;
  • плющение;
  • гель-формование.

Применение химических волокон

Химические волокна имеют очень широкое применение во многих отраслях. Главным их преимуществом является относительно низкая себестоимость и продолжительный срок службы. Ткани из химических волокон активно используются для пошива специальной одежды, в автомобильной промышленности - для укрепления шин. В технике разного рода чаще применяются нетканые материалы из синтетического или минерального волокна.

Текстильные химические волокна

В качестве сырья для производства текстильных волокон химического происхождения (в частности, для получения синтетического волокна) используются газообразные продукты переработки нефти и каменного угля. Таким образом, синтезируются волокна, которые различаются по составу, свойствам и способу горения.

Среди наиболее популярных:

  • полиэфирные волокна (лавсан, кримплен);
  • полиамидные волокна (капрон, нейлон);
  • полиакрилонитрильные волокна (нитрон, акрил);
  • эластановое волокно (лайкра, дорластан).

Среди искусственных волокон самые распространенные - это вискозное и ацетатное. Вискозные волокна получают из целлюлозы - преимущественно еловых пород. С помощью химических процессов этому волокну можно придать визуальную схожесть с натуральным шелком, шерстью или хлопком. Ацетатное волокно производят из отходов от производства хлопка, поэтому они хорошо впитывают влагу.

Нетканые материалы из химических волокон

Нетканые материалы можно получать как из натуральных, так и из химических волокон. Часто нетканые материалы производят из вторсырья и отходов других производств.

Волокнистая основа, подготовленная механическим, аэродинамическим, гидравлическим, электростатическим или волокнообразующим способами, скрепляется.

Основной стадией получения нетканых материалов является стадия скрепления волокнистой основы, получаемой одним из способов:

  1. Химический или адгезионный (клеевой) - сформованное полотно пропитывается, покрывается или орошается связующим компонентом в виде водного раствора, нанесение которого может быть сплошным или фрагментированным.
  2. Термический - в этом способе используются термопластичные свойства некоторых синтетических волокон. Иногда используются волокна, из которых состоит нетканый материал, но в большинстве случаев в нетканый материал еще на стадии формования специально добавляют небольшое количество волокон с низкой температурой плавления (бикомпонент).

Объекты промышленности химических волокон

Поскольку химическое производство охватывает несколько областей промышленности, все объекты химической промышленности делятся на 5 классов в зависимости от сырья и области применения:

  • органические вещества;
  • неорганические вещества;
  • материалы органического синтеза;
  • чистые вещества и химреактивы;
  • фармацевтическая и медицинская группа.

По типу назначения объекты промышленности химических волокон разделяются на основные, общезаводские и вспомогательные.

Синтетические волокна

химические волокна, получаемые из синтетических полимеров. Синтетические волокна формуют либо из расплава полимера (полиамида , полиэфира , полиолефина ), либо из раствора полимера (полиакрилонитрила , поливинилхлорида , поливинилового спирта ) по сухому или мокрому методу. Синтетические волокна выпускают в виде текстильных и кордных нитей, моноволокна , а также штапельного волокна . Разнообразие свойств исходных синтетических полимеров позволяет получать синтетические волокна с различными свойствами, тогда как возможности варьировать свойства искусственных волокон очень ограничены, поскольку их формуют практически из одного полимера (целлюлозы или её производных). Синтетические волокна характеризуются высокой прочностью, водостойкостью, износостойкостью, эластичностью и устойчивостью к действию химических реагентов.

С 1931 года кроме бутадиенового каучука, синтетических волокон и полимеров еще не было, а для изготовления волокон использовались единственно известные тогда материалы на основе природного полимера - целлюлозы.

Революционные изменения наступили в начале 60-х годов, когда после объявления известной программы химизации народного хозяйства промышленность нашей страны начала осваивать производство волокон на основе поликапроамида, полиэфиров, полиэтилена, полиакрилонитрила, полипропилена и других полимеров.

В то время полимеры считали лишь дешевыми заменителями дефицитного природного сырья - хлопка, шелка, шерсти. Но вскоре пришло понимание того, что полимеры и волокна на их основе подчас лучше традиционно используемых природных материалов - они легче, прочнее, более жаростойки, способны работать в агрессивных средах. Поэтому все свои усилия химики и технологи направили на создание новых полимеров, обладающих высокими эксплуатационными характеристиками, и методов их переработки. И достигли в этом деле результатов, порой превосходящих результаты аналогичной деятельности известных зарубежных фирм.

В начале 70-х за рубежом появились поражающие воображение своей прочностью волокна кевлар (США), несколько позже - тварон (Нидерланды), технора (Япония) и другие, изготовленные из полимеров ароматического ряда, получивших собирательное название арамидов. На основе таких волокон были созданы различные композиционные материалы, которые стали успешно применять для изготовления ответственных деталей самолетов и ракет, а также шинного корда, бронежилетов, огнезащитной одежды, канатов, приводных ремней, транспортерных лент и множества других изделий.

Эти волокна широко рекламировались в мировой печати. Однако только узкому кругу специалистов известно, что в те же годы российские химики и технологи самостоятельно создали арамидное волокно терлон, не уступающее по своим свойствам зарубежным аналогам. А потом здесь же были разработаны методы получения волокон СВМ и армос, прочность которых превышает прочность кевлара в полтора раза, а удельная прочность (то есть прочность, отнесенная к единице веса) превосходит прочность высоколегированной стали в 10-13 раз! И если прочность стали на разрыв составляет 160-220 кг/мм2, то сейчас активно ведутся работы по созданию полимерного волокна с прочностью до 600 кг/мм2.

Другой класс полимеров, пригодных для получения высокопрочных волокон - жидкокристаллические ароматические полиэфиры, то есть полимеры, обладающие свойствами кристаллов в жидком состоянии. Волокнам на их основе свойственны не только достоинства арамидных волокон, но еще и высокая радиационная стойкость, а также устойчивость к воздействию неорганических кислот и различных органических растворителей. Это идеальный материал для армирования резины и создания высоконаполненных композитов; на его основе созданы образцы световодов, качество которых соответствует высшему мировому уровню. А ближайшая задача - создание так называемых молекулярных композитов, то есть композиционных материалов, в которых армирующими компонентами служат сами молекулы жидкокристаллических полимеров.

Молекулы обычных полимеров содержат, помимо углерода, еще и атомы других элементов - водорода, кислорода, азота. Но сейчас разработаны методы получения волокон, представляющих собой, по сути дела, чистый полимерный углерод. Такие волокна обладают рекордной прочностью (свыше 700 кг/мм2) и жесткостью, а также чрезвычайно малыми коэффициентами термического расширения, высокой стойкостью к износу и коррозии, к воздействию высоких температур и радиации. Это позволяет успешно использовать их для изготовления композиционных материалов - углепластиков, применяемых в самых ответственных конструкционных узлах скоростных самолетов, ракет и космических аппаратов.

Применение углепластика оказывается экономически весьма выгодным. На единицу веса изготовленного из него изделия нужно затратить в 3 раза меньше энергии, чем на изделие из стали, и в 20 раз меньше, чем из титана. Тонна углепластика может заменить 10-20 тонн высоколегированной стали. Турбина насоса, изготовленная из углепластика и пригодная для перекачки минеральных кислот при температурах до 150оС, оказывается вдвое дешевле и служит в шесть раз дольше. Уменьшается и трудоемкость изготовления деталей сложной конфигурации.

Производство синтетических волокон развивается более быстрыми темпами, чем производство искусственных волокон. Это объясняется доступностью исходного сырья и быстрым развитием сырьевой базы, меньшей трудоёмкостью производственных процессов и особенно разнообразием свойств и высоким качеством синтетических волокон. В связи с этим синтетические волокна постепенно вытесняют не только натуральные, но и искусственные волокна в производстве некоторых товаров народного потребления и технических изделий.

В 1968 мировое производство синтетических волокон составило 3760,3 тыс. т (около 51,6% от общего выпуска химических волокон). Впервые выпуск синтетических волокон в промышленном масштабе организован в середине 30-х гг. 20 в. в США и Германии.

Капрон

Волокно из полиамидных смол называют в нашей стране капрон и анид, качеством своим они почти не отличаются один от другого.

Капрон или капроновое волокно бело-прозрачное, очень прочное вещество. Эластичность капрона на много выше шелка. Капрон относится к полиамидным волокнам. Капрон изготовляется синтетическим путем на наших фабриках и из наших материалов. Исходное сырье производные аминокислот. Капрон можно рассматривать как продукт внутримолекулярного взаимодействие карбоксильной группы и аминогруппы молекулы 6-аминогексановой кислоты:

Упрощенно превращение капролактама в полимер, из которого производят капроновое волокно, можно представить следующим образом:

Капролактам в присутствии воды превращается в 6-аминогексановую кислоту, молекулы которой реагируют друг с другом. В результате этой реакции образуется высокомолекулярное вещество, макромолекулы которого имеют линейную структуру. Отдельные звенья полимера являются остатками 6-аминогексановой кислоты. Полимер представляет собой смолу. Для получения волокон её плавят, пропускают через фильеры. Струи полимера охлаждаются потоком холодного воздуха и превращаются в волоконца, при скручивании которого образуются нити.

После этого капрон подвергается дополнительной химической обработке. Прочность капрона зависит от технологии и тщательности производства. Окончательно выделанный капрон бело-прозрачный и очень прочный материал. Даже капроновая нить, диаметром 0,1 миллиметра выдерживает 0,55 килограммов.

За рубежом синтетическое волокно типа капрон именуется перлон и нейлон. Капрон вырабатывается нескольких сортов; хрустально-прозрачный капрон более прочен, чем непрозрачный с мутно-желтоватым или молочным оттенком.

Наряду с высокой прочностью капроновые волокна характеризуются устойчивостью к истиранию, действию многократной деформации (изгибов).

Капроновые волокна не впитывают влагу, поэтому не теряют прочности во влажном состоянии. Но у капронового волокна есть и недостатки. Оно малоустойчиво к действию кислот макромолекулы капрона подвергаются гидролизу по месту амидных связей. Сравнительно невелика и теплостойкость капрона. при нагревании его прочность снижается, при 2150С происходит плавление.

Изделия из капрона, и в сочетании с капроном, стали уже обычными в нашем быту. Из капроновых нитей шьют одежду, которая стоит намного дешевле, чем одежда из натуральных природных материалов. Из капрона делают рыболовные сети, леску, фильтровальные материалы, кордную ткань. Из кордной ткани делают каркасы авто- и авиапокрышек. Шины с кордом из капрона более износоустойчивы, чем шины с вискозным и х/б кордом. Капроновая смола используется для получения пластмасс, из которых изготавливают различные деталь машин, шестерни, вкладыши для подшипников и т.д. Российская промышленность вырабатывает искусственное волокно еще более прочное, чем капрон, например сверхпрочный ацетатный шелк, который своей прочностью превосходит стальную проволоку. Этот шелк на один квадратный миллиметр выдерживает 126 кг, а стальная проволока - 110 кг.

Лавсан

Лавсан (полиэтилентерефталат) представитель полиэфиров. Это продукт поликонденсации двухатомного спирта этиленгликоля HO-CH2CH2-OH и двухосновной кислоты - терефталевой (1,4-бензолдикарбоновой) кислоты HOOC-C6H4-COOH (обычно используется не сама терефталевая кислота, а ее диметиловый эфир). Полимер относится к линейным полиэфирам и получается в виде смолы. Наличие регулярно расположенных по цепи макромолекулы полярных групп О-СО- приводит к усилению межмолекулярных взаимодействий, придавая полимеру жесткость. Макромолекулы в нем расположены беспорядочно, в в

Синтетические волокна начали производиться промышленным способом в 1938 году. На данный момент их существует уже несколько десятков видов. Для всех них общим является то, что исходным веществом служат низкомолекулярные соединения, превращающиеся в полимеры посредством химического синтеза. Растворением или плавлением полученных полимеров осуществляется приготовление формовочного или прядильного раствора. Их формуют из раствора или расплава, а их уже потом подвергают отделке.

Разновидности

В зависимости от особенностей, которыми характеризуется строение макромолекул, синтетические волокна принято подразделять на гетероцепные и карбоцепные. К первым относят те, что получены из полимеров, в чьих макромолекулах, помимо углерода, присутствуют и иные элементы - азот, сера, кислород и другие. Сюда относят полиэфирные, полиуретановые, полиамидные и полимочевинные. Карбоцепные синтетические волокна характеризуются тем, что основная цепь у них выстроена из атомов углерода. К этой группе относят поливинилхлоридные, полиакрилнитрильные, полиолефиновые, поливинилспиртовые и фторосодержащие.

Полимеры, служащие основой для получения гетероцепных волокон, получаются посредством поликонденсации, а продукт формуется из расплавов. Карбоцепные получаются посредством цепной полимеризации, а формирование происходит обычно из растворов, в редких случаях из расплавов. Можно рассмотреть какое-то одно синтетическое полиамидное волокно, которое получило название сиблон.

Создание и применение

Такое слово, как сиблон, для многих оказывается совершенно незнакомым, однако раньше на ярлычках одежды можно было видеть аббревиатуру ВВМ, под которой скрывалось вискозное высокомодульное волокно. Тогда производителям казалось, что такое название будет выглядеть симпатичнее, чем сиблон, которое могло ассоциироваться с нейлоном и капроном. Производство синтетических волокон этого типа осуществляется из елки, как бы сказочно это не выглядело.

Особенности

Появился сиблон в начале 70-х годов прошлого века. Он представляет собой усовершенствованную вискозу. На первом этапе осуществляется получение из древесины целлюлозы, ее выделяют в чистом виде. Самое большое ее количество содержится в хлопке - около 98%, но из волокон хлопчатника и без этого получаются отличные нити. Поэтому для выработки целлюлозы чаще используется древесина, в частности хвойная, где ее содержится 40-50%, а остальное - это ненужные компоненты. От них требуется избавляться в синтетических волокон.

Процесс создания

Синтетически волокна производятся поэтапно. На первом этапе осуществляется процесс варки, во время которой из древесной стружки все лишние вещества перемещаются в раствор, а также производится разбивка длинных полимерных цепочек на отдельные фрагменты. Естественно, тут не обходится только горячей водой, производятся добавки различных реагентов: натронов и прочих. Только варка с добавлением сульфатов позволяет получить целлюлозу, которая пригодна для производства сиблона, так как в ней остается меньше примесей.

Когда целлюлоза уже выварена, ее отправляют на отбеливание, сушку и прессовку, а потом перемещают туда, где в ней есть необходимость - это производство бумаги, целлофана, картона и волокон, то есть Что же с ней дальше происходит?

Последующая обработка

Если требуется получить синтетические и то сначала нужно приготовить прядильный раствор. Целлюлоза представляет собой твердое вещество, которое непросто растворить. Поэтому обычно ее превращают в растворимый в воде эфир дитиоугольной кислоты. Процесс превращения в это вещество является довольно длительным. Сначала производится обработка целлюлозы горячей щелочью с последующим отжимом, в раствор при этом переходят ненужные элементы. После отжима масса измельчается, а потом помещается в специальные камеры, где начинается предсозревание - происходит укорочение молекул целлюлозы почти вдвое за счет окислительной деструкции. Далее происходит реакция щелочной целлюлозы с сероуглеродом, что позволяет получить ксантогенат. Это масса оранжевого цвета, похожая на тесто, эфир дитиоугольной кислоты и исходного вещества. Этот раствор за его вязкость получил название "вискоза".

Далее происходит фильтрование для удаления последних примесей. Выпускается растворенный воздух посредством «вскипания» эфира в вакууме. Все эти операции приводят к тому, что ксантогенат становится похож на молодой мед - желтый и тягучий. На этом прядильный раствор полностью готов.

Получение волокон

Раствор продавливается через фильеры. волокна не просто прядутся традиционным способом. Эту операцию сложно сравнить с простой текстильной, правильнее будет сказать, что это химической процесс, позволяющий миллионам струек жидкой вискозы стать твердыми волокнами. На территории России из целлюлозы получается вискоза и сиблон. Второй тип волокна в полтора раза прочнее первого, характеризуется большей устойчивостью к щелочам, ткани из него отличаются гигроскопичностью, меньшей степенью усадки и сминания. А различия в процессах производства вискозы и сиблона появляются в тот момент, когда в осадительной ванной после фильер оказываются только что "народившиеся" синтетические волокна.

Химия в помощь

Для получения вискозы в ванну наливается серная кислота. Она предназначена для разложения эфира, благодаря чему получаются чисто целлюлозные волокна. При необходимости получения сиблона в ванну добавляют частично оказывающий препятствие гидролизу эфира, поэтому в нитях будет содержаться остаточный ксантогенат. И что же это дает? Далее волокна подвергаются растягиванию и формовке. Когда в полимерных волокнах имеются остатки ксантогената, получается вытянуть полимерные целлюлозные цепочки вдоль оси волокна, а не расположить их хаотично, что характерно для обычной вискозы. После вытяжки жгут из волокон разрезают на шпательки длиной 2-10 миллиметров. После еще нескольких процедур осуществляется прессовка волокон в кипы. Тонны древесины достаточно для получения 500 килограмм целлюлозы, из которой будет выпущено 400 килограмм волокна сиблона. Прядение целлюлозы осуществляется примерно двое суток.

Что дальше делают с сиблоном?

В восьмидесятых годах эти синтетические волокна использовались в качестве добавок к хлопку, чтобы нити прялись лучше и не рвались. Из сиблона делали подложки под искусственную кожу, а также использовали его при производстве изделий из асбеста. Тогда технологи не были заинтересованы в создании чего-то нового, требовалось как можно больше волокна для реализации задуманного.

А на Западе в те времена высокомодульные вискозные волокна использовались для производства тканей, которые отличались дешевизной и прочностью в сравнении с хлопчатобумажными, но при этом хорошо впитывали влагу и дышали. Сейчас у России не осталось собственных хлопковых регионов, поэтому на сиблон возлагаются большие надежды. Только спрос на него пока не особо велик, так как ткани и одежду отечественного производства сейчас почти никто не покупает.

Полимерные волокна

Их принято подразделять на природные, синтетические и искусственные. Природные представляют собой те волокна, образование которых осуществляется в натуральных условиях. Их принято классифицировать по происхождению, которое определяет их химический состав, на животные и растительные. Первые состоят из белка, а именно каротина. Это шелк и шерсть. Вторые состоят из целлюлозы, лигнина и гемицеллюлозы.

Искусственные синтетические волокна получаются посредством химической переработки полимеров, существующих в природе. К ним принято относить ацетатные, вискозные, альгинатные и белковые волокна. В качестве сырья для их получения служат сульфатная или сульфитная древесная целлюлоза. Выпуск искусственных волокон производится в виде текстильных и кордных нитей, а также в виде штапельного волокна, которое перерабатывается вместе с иными волокнами в процессе производства разных тканей.

Синтетическое полиамидное волокно получается из полимеров, выведенных искусственно. В качестве исходного сырья в таком процессу используются полимерные волокна, сформированные из гибких макромолекул слаборазветвленной или линейной структуры, обладающие значительной массой - более 15 000 атомных единиц массы, а также очень узким молекулярно-массовым распределением. В зависимости от типа синтетические волокна способны обладать высокой степенью прочности, значительной величиной по отношению к удлинению, эластичностью, устойчивостью к множественным нагрузкам, малыми остаточными деформации и быстрым восстановлением после снятия нагрузки. Именно поэтому помимо использования в текстиле им нашли применение в качестве армирующих элементов во время изготовления композитов, и все это позволили сделать особые свойства синтетических волокон.

Заключение

В последние несколько лет можно наблюдать очень устойчивый рост количества достижений в сфере разработки новых полимерных волокон, в частности, пара-арамидных, полиэтиленовых, термостойких, комбинированных, структура которых - ядро-оболочка, гетероциклических полимеров, в которые включены различные частицы, к примеру, серебро или иные металлы. Теперь материал нейлон - это уже не верх инженерной мысли, так как сейчас существует огромное количество новых волокон.