Ремонт Дизайн Мебель

Калибровка температурных датчиков. Поверка датчиков температуры на объекте(бездемонтажная поверка). Возможные неисправности и способы их устранения

Датчики температуры часто устанавливаются на объекты таким образом, что их демонтаж практически невозможен или вызывает большие трудности. В то же время необходимо иметь уверенность в точности их показаний. Для таких случаев разрабатываются методики контроля работоспособности датчиков в процессе их эксплуатации без демонтажа. Кроме того от периодической поверки иногда приходится отказываться по причине дороговизны самой поверки по сравнению со стоимостью датчика. В публикациях по этой теме и в проспектах фирм-производителей описаны несколько подходов в решению проблемы надежности датчиков температуры.

1) Проводится статистический анализ дрейфа характеристик датчиков конкретного типа при рабочих температурах, и устанавливается срок их эксплуатации, в течение которого точность находится в пределах заданных допусков с большой вероятностью. После истечения этого срока все датчики подлежат обязательной замене.

2) На объект устанавливается избыточное количество датчиков. Результат определяется либо по среднему арифметическому из их показаний либо разрабатывается более сложная схема анализа, включающая сравнение дрейфов датчиков и выявление датчиков, показывающих дрейф выше среднего. Распространенной моделью являются датчики с двумя и тремя чувствительными элементами в одном корпусе.

3) На объект устанавливаются датчики разных типов (например, термометры сопротивления и термопары). Это позволяет избежать ошибок, связанных с одинаковым влиянием температурных режимов и условий на датчики одного типа. В США был запатентован само-поверяемый термометр, совмещающий в себе свойства чувствительного элемента сопротивления и термопары.

4) Иногда каналы для размещения датчиков конструируются так, что предусматривается возможность ввода рядом с рабочим датчиком образцового термометра во время поверки и вывода его по окончании поверки. Методы бездемонтажной поверки важны на опасных объектах, таких, например, как активная зона реактора. К сожалению, никаких стандартов по методикам бездемонтажной проверки и контроля работоспособности датчиков нет. Однако, проблема очень часто затрагивается на международных семинарах и конференциях.

Одним из решений проблемы поверки термопар во время эксплуатации без демонтажа с объекта, является метод использования термопар с дополнительным каналом, в который устанавливается на время поверки эталонная термопара. Такую конструкцию термопары и методику ее поверки запатентовало в 2007 г. ООО «ПК «ТЕСЕЙ» (патент на изобретение 2299408). В качестве эталонного средства измерения используется тонкая кабельная термопара типа ТНН (нихросил-нисил) 3 разряда.

Термопара ТНН вводится в дополнительный канал основной термопары только на непродолжительное время - время поверки, поэтому образование термоэлектрической неоднородности в термоэлектродах маловероятно. Подробнее об этом методе можно прочитать в разделе «Публикации» .

Аналогичные конструкции термометров и термопар для бездемонтажной поверки в условиях АЭС с дополнительными каналами для эталонных датчиков производятся в ЗАО НПК «Эталон» (г. Волгодонск).

Следующий материал раздела мы нашли на конференции ТЕМПМЕКО 2010. Там был представлен интересный доклад от немецкой фирмы Electrotherm о термопарах со встроенной реперной точкой плавления металла, позволяющей делать точную периодическую поверку термопар. С разрешения фирмы публикуем краткую информацию об устройстве термопары. (Российские компании, изготавливающие аналогичные установки приглашаем прислать свой материал для публикации на сайте)

Термопара со встроенной реперной точкой

Термопара со встроенной реперной точкой (разработана и выпускается фирмой Electrotherm, Германия) сайт фирмы www.electrotherm.de

Главным элементом данной измерительной системы является термопара со встроенной ячейкой реперной точки и миниатюрным нагревательным элементом. Ячейка реперной точки содержит вещество высокой чистоты (чистый металл или эвтектический сплав). Когда температура среды медленно повышается до значения, превышающего температуру плавления металла, на кривой, отслеживающей сигнал термопары, наблюдается воспроизводимая «площадка» с постоянной ТЭДС, так называемая «площадка плавления». Во время этой площадки происходит фазовый переход, т.е. тепло, поступающее извне, идет на разрушение кристаллической решетки металла, рост температуры останавливается. Регистрируемое значение ТЭДС может использоваться для градуировки термопары при известной температуре фазового перехода. При снижении температуры можно наблюдать «площадку затвердевания».

Нагрев термопары для калибровки может быть также осуществлен без разогрева объекта, с помощью миниатюрного встроенного нагревателя.

В таблице приведены данные о реперных точках для градуировки термопар.

Каждая термопара со встроенной реперной точкой снабжена трансмиттером, сигнал с которого поступает на компьютер и обрабатывается с помощью специального программного обеспечения. Компьютер управляет всем циклом нагрева, калибровки и анализа данных. Он может соединяться сразу с 8 измерительными модулями и также связываться посредством сетевых карт с центральным управляющим компьютером.

Согласовано Утверждаю

Руководитель ГЦИ СИ Директор

Зам. Директора ФГУ ВЦСМ

__________ __________

Методика калибровки

датчиков температуры серии КДТ.

Разработал

Гл. технолог ООО«КОНТЭЛ»

Методика калибровки датчиков температуры

КДТ-50, КДТ-200 и КДТ-500.

1. Перед началом калибровки проверить соответствие расположенных на плате компонентов по сборочному чертежу: КДТ50.02.01СБ – для датчиков КДТ-50; КДТ200.02.01СБ – для датчиков КДТ-200; КДТ500.02.01СБ – для датчиков КДТ-500.

2.Калибровка электронного блока датчиков КДТ-50 и КДТ-200.

2.1.Подключить к плате источник питания и эквивалент термометра – сопротивления ТСМ-100 согласно рис.1.

DIV_ADBLOCK62">


2.3.Последовательность операций регулировки.

2.3.1.Установить на вольтметре режим «U=» и предел измерения, соответствующий значению «три знака после запятой».

2.3.2.Установить на эквиваленте ТСМ нижнее значение измеряемой температуры: для КДТ-50–«-500С», для КДТ-200 - «00С».

2.3.3.Подать напряжение питания.

2.3.4.Вращением подстроечного резистора RP1 установить значение выходного тока 4 mA (показания вольтметра 0,400).

2.3.5.Установить на эквиваленте ТСМ верхнее значение измеряемой температуры: для КДТ-50–«+500С», для КДТ-200 - «+2000С».

2.3.6.Вращением подстроечного резистора RP2 установить значение выходного тока 20 mA (показания вольтметра 20,00).

2.3.7.Повторять операции п. п.2.3.4 и 2.3.6 до установления выходного тока соответствующего диапазону

измеряемой температуры в пределах погрешности, не превышающей 0,25% .

2.3.8.Проверить линейность по промежуточным точкам.

2.3.9.Соответствие измеряемой температуры (эквивалентного значения сопротивления) и выходного тока приведены в Приложении 1.

3.Калибровка датчиков температуры КДТ-500.

3.1.Подключить к плате источник питания и эквивалент термометра – сопротивления Pt-100 согласно рис.2.

Полярность подключения источника питания значения не имеет.

-Эквивиалент Pt 100 - специальный магазин сопротивлений, имитирующий термометр-сопротивление типа Pt-100;

-V - Цифровой вольтметр типа В7-40;

-R н – катушка электрического сопротивления Р331;

-ИП – источник постоянного тока стабилизированный типа Б5-45.

3.2.Последовательность операций калибровки.

Ввиду отсутствия в изделии регулировочных элементов операция калибровки сводится к проверке работоспособности и линейности преобразования сопротивления в ток.

3.2.1. Установить на вольтметре режим «U=» и предел измерения, соответствующий значению «три знака после запятой».

3.2.2. Установить на эквиваленте Pt-100 нижнее значение измеряемой температуры: «00С».

3.2.3. Подать напряжение питания.

3.2.4.Показания вольтметра должны соответствовать 4 mA +/-0,25% (показания вольтметра 0,400).

3.3.5.Установить на эквиваленте Pt-100 верхнее значение измеряемой температуры: «+5000С».

3.3.6. Показания вольтметра должны соответствовать 20mA +/-0,25% (показания вольтметра 20,00).

3.3.7.Проверить линейность по промежуточным точкам.

3.3.9.Соответствие измеряемой температуры (эквивалентного значения сопротивления) и выходного тока приведены в Приложении 2.

Примечание. Схема датчика температуры КДТ-500 рассчитана на работу совместно с Pt-100 с W100=1.3910. Применение термометра-сопротивления с W100=1.3850 приводит к увеличению основной погрешности до 0,8% в середине диапазона.

4.После регулировки платы датчиков покрываются лаком. Рекомендуемое время сушки – 2 суток.

После сушки платы подлежат обязательной перепроверке с целью коррекции выходного тока. Во время этой операции достаточно проверить датчик на краях диапазона.

Исполнитель________

Приложение 1

Соответствие температуры, эквивалентного сопротивления и выходного тока датчиков температуры КДТ-50.


Соответствие температуры, эквивалентного сопротивления и выходного тока датчиков температуры КДТ-200.

При отсутствии эквивалента ТСМ-100 следует применить магазин сопротивлений МСР-63 или аналогичный.

Приложение 2

Соответствие температуры, эквивалентного сопротивления и выходного тока датчиков температуры КДТ-500.

(для W100=1.3850)

При отсутствии эквивалента Pt-100 следует применить магазин сопротивлений МСР-63 или аналогичный.

Градуировка внешнего температурного датчика для измерения концентрации ионов в режиме автоматической термокомпенсации (типа ТД-1 , ТКА-4 и др. с сопротивлением чувствительного элемента не более 5 кОм) производится с целью подстройки чувствительности по температуре в автоматическом режиме по нескольким точкам (от 2 до 5). Градуировка должна проводится с помощью термостата, обеспечивающего поддержание заданной температуры с точностью не хуже 0,1 о С.

Подключите температурный датчик к разъему «датчик» или «Т/О 2 » измерительного преобразователя. Включите анализатор, войдите в режим “Доп.Режим” и нажмите кнопку “ВВОД” .

Кнопками и выберите опцию “ГрадТермометр” и нажмите кнопку “ВВОД” . Для входа в режим градуировки термометра необходимо ввести пароль. На дисплее появится надпись

ВВЕДИТЕ ПАРОЛЬ

Введите число

Необходимо ввести с клавиатуры число "314" и нажать кнопку "ВВОД" .

Введите количество точек градуировки. Для этого нажмите кнопку “N” .На дисплее появиться надпись:

Число точек

Кнопками и установите необходимое число калибровочных точек и нажмите кнопку “ВВОД” . При этом на дисплее появится окно со значением температуры раствора в верхней строке, условным калибровочным числом и номером точки калибровки в нижней строке, например:

25.00 0С

ххххх.ххх n1

Установите температуру воды в термостате в начале диапазона температурной компенсации, например (5  0,5) 0 С. Перейдитек первой точке градуировки. Для этого кнопкой выберите окно с обозначением номера точки градуировки в нижней строке n1 . Затем нажмите кнопку “Изм” . На дисплее появится меняющееся значение градуировочного

числа. После установления его постоянного значения нажмите кнопку “ВВОД” .После сообщения:

Ввод изменения?

ДА - ВВОД НЕТ - ОТМ

нажмите кнопку “ВВОД” . Затем нажмите кнопку “Числ” . Появится сообщение “Введите число” . Введите значение температуры, измеренное эталонным термометром и нажмите кнопку “ВВОД” .После сообщения

Ввод изменения?

ДА - ВВОД НЕТ - ОТМ

нажмите последовательно кнопки “ВВОД” .

Аналогично проведите градуировку остальных температурных точек, например при температурах (20  0,5) 0 С и (35  0,5) 0 С.

Таким образом будет автоматически произведена подстройка чувствительности прибора по температуре.

3.6. Указания по поверке

3.6.1. Поверке подлежат все вновь выпускаемые, выходящие из ремонта и находящиеся в эксплуатации анализаторы.

3.6.2. Периодическая поверка анализаторов должна проводиться не реже одного раза в год территориальными органами метрологической службы Госстандарта.

3.6.3. Поверка анализаторов осуществляется в соответствии с “Методикой поверки”

3.7. Требования к квалификации исполнителя

К выполнению измерений и обработке результатов допускаются лица с высшим или средним специальным образованием, прошедшие соответствующую подготовку, имеющие опыт работы в химической лаборатории и должны ежегодно проходить проверку знаний техники безопасности.

3.8. Меры безопасности

3.8.1. По требованиям безопасности прибор соответствует требованиям ГОСТ 26104, класс защиты III.

3.8.2. При проведении испытаний и измерений должны соблюдаться требования безопасности по ГОСТ 12.1.005, ГОСТ 12.3.019 .

3.8.3. При работе с анализаторами необходимо выполнять общие правила работы с электрическими установками до 1000В и требования, предусмотренные “Основными правилами безопасной работы в химической лаборатории”, М; Химия, 1979-205с.

4. РЕМОНТ

4.1. Условия по ремонту

Анализаторы являются сложным электронным прибором, поэтому к их ремонту допускается квалифицированный персонал предприятия-изготовителя или официальных представителей на условиях сервисного обслуживания. После ремонта обязательна проверка основных технических характеристик прибора в соответствии с “Методикой поверки”.

При ремонте анализаторов следует принимать меры безопасности в соответствии с действующими правилами эксплуатации электроустановок до 1000 В.

4.2. Возможные неисправности и способы их устранения

Перечень некоторых наиболее часто встречающихся или возможных неисправностей анализаторов, их признаки и способы устранения приведены в таблице 4.

Таблица 4.1

Наименование неисправности и внешнее проявление

Вероятные причины

Способы устранения

После включения анализатора отсутствует информация на индикаторе

1. Отсутствуют батарей питания или они полностью разряжены

2. Отсутствует напряжение в сети

3. Неисправен блок питания

4. Разряжен аккумулятор

1. Установите элементы питания или замените их

2. Подключите блок питания к исправной розетке

3. Замените блок питания

4. Зарядите аккумулятор, подключив блок питания

После включения анализатора на индикаторе появляется надпись “Смените батареи”

Разряжены батареи питания

Замените элементы питания

Другие неисправности устраняются изготовителем.

Теоретическая часть

Измерение температуры является наиболее массовым видом измере­ния. В повседневной практике используются миллионы термометров различных типов на различные диапазоны измерения температуры. Услов­но по диапазонам термометры можно разделить на следующие группы:

  1. Термометры для измерения комнатных температур. Сюда же можно отнести приборы для климатических измерений поскольку послед­ние принципиально не отличаются от чисто комнатных термометров. Со­ответственно, диапазон измеряемых температур составляет от – 50 до – 40 о С до температуры кипения воды + 100 о С.
  2. Термометры для измерения низких (криогенных) температур. Та­кие приборы работают по особым принципам, включая эффекты сверхпро­водимости. Реально криогенные температуры составляют от близких к нулю до температур, при которых замерзают ртуть и спирт. В этом случае климатические термометры становятся непригодными для измерений.
  3. Термометры для измерения высоких температур, реально работают в диапазоне от несколько сот градусов Цельсия до температуры плавлени­я золота 1064,18 о С. Чаще всего для измерения таких температур использу­ют термопары и термометры сопротивления.
  4. Термометры для измерения температур, при которых объекты становятся самосветящимися, т.е. излучают видимый человеческим гла­зом свет. Такие приборы называют пирометрами, что происходит от слова “пиро” – огонь. Их используют для измерения температур раскалённых объектов, пламени или плазмы. Глаз человека видит температурное излучение, начиная с температуры в 800 – 900 о С, когда излучение объектов видно как темно-вишневое.
  5. Для измерения температур в тысячи, десятки и сотни тысяч градусов используют специальные спектроскопические методы измерения температур, в которых последняя определяется по интенсивности спектральных линий атомов и ионов, из которых состоит объект. Такое состояние называется плазмой, а методы измерения температуры плазмы называются методами диагностики. Таким же способом определяют температуру небесных самосветящихся объектов – звёзд.

По реализации методов измерения температуры различают следующие методы, когда термометр приводится в непосредственный контакт с телом, температура которого измеряется, и неконтактные методы, когда источником информации о температуре объекта служит светимость, яркость или цвет объекта.

Контактные термометры для измерения комнатных и средних температур можно разделить на следующие типы:

  • Волюметрические приборы, в которых информация о температуре, получается, по изменению объема термометрической жидкости или газа. Это наиболее распространённый тип термометра, хорошо знакомый каждому.
  • Дилатометрические термометры, в которых температура измеряется по линейному расширению тел. Наиболее массовыми термометрами такого типа являются биметаллические пластины, представляющие собой две полоски из металлов с разными коэффициентами темпера­турного расширения, соединёнными (спаянными) по всей длине (Рис.1).

Биметаллическая пластина – датчик температуры

Биметаллические датчики температуры очень удобны для автомати­ческих регулирующих устройств и широко используются в различных терморегуляторах.

Термопары как датчики температуры. В этих термометрах о температуре судят по ЭДС, возникающей в цепи, состоящей из двух различных проводников, спаянных по концам. Если спаи поддерживать при разных температурах, в цепи (рис. 2) возникает ток, пропорциональ­ный разности температур спаев.

Дифференциальная термопара.

Термосопротивления – датчики температуры в виде металлической про­волоки, изменяющей электрическое сопротивление при изменении темпе­ратуры. Зависимость сопротивления от температуры имеет вид:

где R T - сопротивление при температуре T­ 1 . R 0 – сопротивление при 0 0 C, a - температурный коэффициент положительный для металлов и отрица­тельный для графита.

Термометры для измерения низких температур, равно как пиромет­ры и методы диагностики плазмы имеют целый ряд особенностей, сущ­ность которых выходит за пределы поставленной конкретной задачи. Же­лающие могут ознакомиться с этим более подробно в специальной лите­ратуре.

Для понимания сущности поставленной в работе задачи следует подробно остановиться на точностных возможностях контактных термо­метров.

Наиболее точными из всех типов контактных термометров являются термопары сопротивления. Электрическое сопротивление некоторых метал­лов, например платины или родия очень стабильны во времени. Это даёт возможность отградуировать терморезистор с уверенностью, что его сопротивление при заданной температуре остаётся постоянным практиче­ски в течении всего срока службы термометра. Платиновые термометры сопротивления в измерительной и метрологической практике являются средством передачи размера единицы температуры от эталонов к рабочим средствам измерения, т.е. чаще всего используются как образцо­вые средства измерения.

Следующими по точности измерения температуры являются некото­рые типы термопар. Например, термопара, изготовленная из платины (один из электродов) и сплав платины с 10% родия или с 15% родия (вто­рой элемент термопары) имеет температурную зависимость ЭДС для раз­личных экземпляров, воспроизводящуюся в 4 – 5 знаках. Такая точность гарантированна независимо от размеров термопары, от толщины электро­дов, от технологии изготовления проволоки и т.д.

Другие типы термопар, например, хромель – алюминий, хромель - …. медь – константан, железо константан и т.д. имеют большие абсолютные значения термо ЭДС, но нуждаются в индивидуальной калибровке, по­скольку свойства таких термопар индивидуальны для каждого датчика.

Волюметрические термометры как правило позволяют измерять температуру с погрешностью 0,1 – 0,05 0 С, т.е. гарантируют точность в 1 – 2 знаках после запятой. По этой причине волюметрические приборы ис­пользуются в большинстве своём в рутинных повседневных измерениях, когда указанная точность является достаточной. Это имеет место при из­мерениях температуры в помещениях, на улице, при контроле технологи­ческих процессов и т.д.

Дилатометрические термометры имеют погрешности измерений на уровне 1 – 2 0 С и по этой причине используются в измерениях, не требую­щих большой точности. Если речь идёт о регулировании температуры в морозильных камерах, в системах охлаждения двигателей, при нагрева­нии воды и в других аналогичных задачах, то дилатометрические термо­метры оказываются наиболее предпочтительными ввиду их высокой ме­ханической прочности, долговечности, надёжности. Эти качества являют­ся причиной того, что дилатометрические термометры или дилатометри­ческие датчики установлены во многих системах автоматического регули­рования температуры - в холодильниках, в автомобилях, в машинах и механизмах, когда требуется информация о температуре.

Завершая краткий обзор контактных методов измерения температу­ры, напомним основные метрологические категории в любом виде изме­рений. Начнём с определений:

  • эталоном . исходным образцовым средством измерения, устанговкой высшей точности в зависимости от метрологического статуса назы­вается средство измерения, позволяющее воспроизводить единицу физической величины и (или) измерять её с наивысшей возможной точностью
  • образцовым средством измерения называют средство измерения, пред­назначенное для поверки рабочих средств измерения. Образцовым средством измерения может служить один из рабочих приборов с более точно в сравнении с последними определёнными метрологиче­скими характеристиками.
  • рабочие приборы измерительные устройства, непосредственно исполь­зуемые в измерительных процедурах
  • меры – средства измерения, предназначенные для хранения и передачи размера физической величины. Меры используют для передачи размера единицы от эталонов к образцовым средствам измерений или от образцовых средств к рабочим.

Процесс передачи размера единицы может осуществляться с использо­ванием образцовой меры или сравнением (компарированием) показаний рабочего прибора с показаниями образцового прибора. Калиб­ровка и градуировка термометров может также осуществляться:

  1. По стандартным справочным данным, например об ЭДС термопар или табличных значений сопротивлений образцовых термометров.
  2. По реперным температурным точкам, т.е. по стандартным значе­ниям температур фазовых переходов – кипения, отвердевания, плавления, чистых веществ. Всего в температурной шкале МПТШ – 90, действующей в системе СИ в настоящее время, содержится 27 значений температур в диапазоне от –259,346 0 С до 33,83 0 С. Среди этих значений 14 реперных точек считаются основными, т.е. имеют погрешность во 2 – 3 знаках по­сле запятой. Остальные 13 реперных точек имеют погрешность в десятые доли градуса 0 С и выше.

Цель работы и описание измерительной установки

Целью данной работы являются ознакомление с метрологическими аспектами температурных измерений – с процедурой передачи размера единицы термодинамической температуры от образцового термометра к рабочему прибору. В качестве образцового средства измерения выбран платиновый термометр сопротивления, аттестованный с погрешностью 0,05 0 С. Рабочим средством измерения служит термосопротивление, предназначенное для использования в термометрах с погрешностью из­мерения 0,1 0 С. Методом передачи размера единицы служит компарирова­ние – сравнение измерительного сигнала с платинового тер­морезистора с терморезистором из меди.

Другой целью работы является калибровка рабочего терморезистора и определения для него температурного коэффициента l в формуле 1.

В качестве исходной информации используется паспортное значение сопротивления платинового датчика температуры в диапазоне от –50 0 С до 200 0 С. Эти данные приведены в таблице 1 и изображены на графике на рис. 3.

Сопротивление платинового датчика температуры в диапазоне – 50 0 С - +200 0 С. Паспортные данные.

NTC (терморезисторы с отрицательным температурным коэффициентом) и PTC (терморезисторы с положительным температурным коэффициентом) являются термозависимыми резисторами. Чтобы измерить сопротивление, его включают последовательно с обычным резистором и измеряют падение напряжения на нем. Пример схемы подключения находится здесь.

Микросхема, выдающая 10мВ на каждый градус Кельвина. Доступна в различных исполнениях. Примеры схем подключения приведены в даташите; схема работы с компаратором (вместо "правильного" АЦП) находится здесь.

Точность 1 градус (при 25°C) даже без калибровки

в случае длинных соединительных проводов наводится слишком много пульсаций

Микросхема, подобная LM335, с той разницей, что ток, протекающий через микросхему, пропорционален температуре. С помощью "схемы" (два сопротивления) из даташита можно изменить ток таким образом, что на каждый градус Кельвина будет выдаваться 1 мВ. Так как преобразование тока/напряжения происходит на плате (и следовательно, вблици от АЦП) и измерение производится с помощью тока, то помехи из-за пульсаций в сети значительно меньше, чем в случае LM335

точность 1° (при 25°C) даже без калибровки

относительно низкая цена (Reichelt 0,90 EUR)

необходим АЦП

DS1621 - это температурный сенсор, объединенный с АЦП. Он передает результаты измерений по шине I2C. Схема электронного термометра с использованием этой микросхемы находится здесь.

Преимущества:

уже откалиброван

не нужен АЦП

так как I2C является шиной, с помощью всего двух портов ввода-вывода можно подключить и использовать несколько DS1621 и других I2C-микросхем

LM75 подобна DS1621, но доступна только в SMD-корпусе и имеет более низкую точность. Однако, его чаще можно увидеть на системных платах ПК, так что при разборке старой машины можно бесплатно получить термосенсор в свое распоряжение. Схема подключения находится здесь.

относительно дорогой (Reichelt 5,45 EUR)

SHT11 - это сенсор температуры и влажности от Sensirion .

Как определить тип датчика температуры SKS Sensors®?

Тип датчика температуры SKS Sensors® представлен набором символов - кодом. Код для каждого типа датчика указан в документации по продукции, см. информацию по отдельным типам от 1 до 22 в разделе Продукция > Датчики температуры .

Создайте свой код продукта SKS Sensors ® с инструментом подбора продукции

Вы можете создать пошагово правильный код продукта для вашего применения, выбирая последовательно свойства и указывая основные данные по размерам в соответствующие поля инструмента подбора продукции.

Если вам требуется помощь в переводе старого типа датчика на новый, просим обращаться к вашему дилеру датчиков SKS Sensors ® .