Ремонт Дизайн Меблі

Еге з фізики 2. Підготовка до ЄДІ з фізики: приклади, рішення, пояснення

Відеокурс «Отримай п'ятірку» включає всі теми, необхідні для успішного складання ЄДІ з математики на 60-65 балів. Повністю всі завдання 1-13 Профільного ЄДІ з математики. Підходить також для здачі Базового ЄДІ з математики. Якщо ви хочете здати ЄДІ на 90-100 балів, вам треба вирішувати частину 1 за 30 хвилин і без помилок!

Курс підготовки до ЄДІ для 10-11 класів, а також для викладачів. Все необхідне, щоб вирішити частину 1 ЄДІ з математики (перші 12 завдань) та задачу 13 (тригонометрія). А це понад 70 балів на ЄДІ, і без них не обійтись ні стобальнику, ні гуманітарію.

Уся необхідна теорія. Швидкі способи вирішення, пастки та секрети ЄДІ. Розібрано всі актуальні завдання частини 1 із Банку завдань ФІПД. Курс повністю відповідає вимогам ЄДІ-2018.

Курс містить 5 великих тем, по 2,5 години кожна. Кожна тема дається з нуля, це просто і зрозуміло.

Сотні завдань ЄДІ. Текстові завдання та теорія ймовірностей. Прості і легко запам'ятовуються алгоритми розв'язання задач. Геометрія. Теорія, довідковий матеріал, аналіз всіх типів завдань ЄДІ. Стереометрія. Хитрі прийоми розв'язання, корисні шпаргалки, розвиток просторової уяви. Тригонометрія з нуля - до завдання 13. Розуміння замість зубріння. Наочне пояснення складних понять. Алгебра. Коріння, ступеня та логарифми, функція та похідна. База на вирішення складних завдань 2 частини ЄДІ.

Змін у завданнях ЄДІ з фізики на 2019 рік рік немає.

Структура завдань ЄДІ з фізики-2019

Екзаменаційна робота складається з двох частин, що включають 32 завдання.

Частина 1містить 27 завдань.

  • У завданнях 1–4, 8–10, 14, 15, 20, 25–27 відповіддю є ціле число або кінцевий десятковий дріб.
  • Відповіддю до завдань 5–7, 11, 12, 16–18, 21, 23 та 24 є послідовність двох цифр.
  • Відповіддю до завдань 19 та 22 є два числа.

Частина 2містить 5 завдань. Відповідь до завдань 28–32 включає докладний опис всього ходу виконання завдання. Друга частина завдань (з розгорнутою відповіддю) оцінюються експертною комісією на основі .

Теми ЄДІ з фізики, які будуть в екзаменаційній роботі

  1. Механіка(кінематика, динаміка, статика, закони збереження в механіці, механічні коливання та хвилі).
  2. Молекулярна фізика(Молекулярно-кінетична теорія, термодинаміка).
  3. Електродинаміка та основи СТО(Електричне поле, постійний струм, магнітне поле, електромагнітна індукція, електромагнітні коливання та хвилі, оптика, основи СТО).
  4. Квантова фізика та елементи астрофізики(Корпускулярнохвильовий дуалізм, фізика атома, фізика атомного ядра, елементи астрофізики).

Тривалість ЄДІ з фізики

На виконання всієї екзаменаційної роботи відводиться 235 хвилин.

Приблизний час виконання завдань різних частин роботи становить:

  1. для кожного завдання з короткою відповіддю – 3–5 хвилин;
  2. для кожного завдання з розгорнутою відповіддю – 15–20 хвилин.

Що можна брати на іспит:

  • Використовується непрограмований калькулятор (на кожного учня) з можливістю обчислення тригонометричних функцій (cos, sin, tg) та лінійка.
  • Перелік додаткових пристроїв та використання яких дозволено на ЄДІ затверджується Рособрнаглядом.

Важливо!не варто розраховувати на шпаргалки, підказки та використання технічних засобів (телефонів, планшетів) на іспиті. Відеоспостереження на ЄДІ-2019 посилять додатковими камерами.

Бали ЄДІ з фізики

  • 1 бал - за 1-4, 8, 9, 10, 13, 14, 15, 19, 20, 22, 23, 25, 26, 27 завдання.
  • 2 бали – 5, 6, 7, 11, 12, 16, 17, 18, 21, 24.
  • З бала – 28, 29, 30, 31, 32.

Всього: 52 балів(Максимальний первинний бал).

Що необхідно знати під час підготовки завдань у ЄДІ:

  • Знати/розуміти зміст фізичних понять, величин, законів, принципів, постулатів.
  • Вміти описувати та пояснювати фізичні явища та властивості тіл (включаючи космічні об'єкти), результати експериментів… наводити приклади практичного використання фізичних знань
  • Відрізняти гіпотези від наукової теорії, робити висновки з урахуванням експерименту тощо.
  • Вміти застосовувати отримані знання під час вирішення фізичних завдань.
  • Використовувати набуті знання та вміння у практичній діяльності та повсякденному житті.

З чого розпочати підготовку до ЄДІ з фізики:

  1. Вивчати теорію, необхідну кожному за завдань.
  2. Тренуватися у тестових завданнях із фізики, розроблені на основі ЄДІ. На нашому сайті завдання та варіанти фізики будуть поповнюватися.
  3. Правильно розподіляй час.

Бажаємо успіху!

У другому завданні ЄДІ з фізики необхідно вирішити завдання на закони Ньютона або пов'язану з дією сил. Нижче ми наводимо теорію з формулами, які необхідні для успішного вирішення завдань на цю тематику.

Теорія до завдання №2 ЄДІ з фізики

Другий закон Ньютона

Формула другого закону Ньютона F =ma . Тут F і aВекторні величини. Величина aце прискорення руху тіла під впливом зазначеної сили. Воно прямо пропорційне силі, що діє дане тіло і спрямоване у бік дії сили.

Рівнодійна

Равнодіюча сила – це сила, дія якої замінює дію всіх сил, що додаються до тіла. Або, іншими словами, рівнодіюча всіх сил, прикладених до тіла, дорівнює векторній сумі цих сил.

Сила тертя

F тр =μN , де μ μ, яке є величиною постійною для цього випадку. Знаючи силу тертя та силу нормального тиску (цю силу називають ще силою реакції опори), можна обчислити коефіцієнт тертя.

Сила тяжіння

Вертикальна складова руху залежить від сил, які діють тіло. Необхідне знання формули сили тяжіння F=mg, оскільки, зазвичай, діє тіло, кинуте під кутом до горизонту, лише вона.

Сила пружності

Сила пружності - сила, що виникає в тілі в результаті його деформації і прагне повернути його у вихідний (початковий) стан. Для сили пружності використовується закон Гука: F = k δl, де k-Коефіцієнт пружності (жорсткість тіла), δl- Величина деформації.

Закон всесвітнього тяготіння

Сила F гравітаційного тяжіння між двома матеріальними точками маси m1 і m2, розділеними відстанню r, пропорційна обом масам і обернено пропорційна квадрату відстані між ними:

Розбір типових варіантів завдань №2 ЄДІ з фізики

Демонстраційний варіант 2018

На графіку наведено залежність модуля сили тертя ковзання від модуля сили нормального тиску. Який коефіцієнт тертя?

Алгоритм рішення:
  1. Записуємо формулу, яка пов'язує ці сили. Виражаємо коефіцієнт тертя.
  2. Розглядаємо графік, встановлюємо пару відповідних значень сил нормального тиску N та тертя.
  3. Обчислюємо коефіцієнт, виходячи із значень сил, взятих із графіка.
  4. Записуємо відповідь.
Рішення:
  1. Сила тертя пов'язана із силою нормального тиску формулою F трN, де μ - коефіцієнт тертя. Звідси знаючи величину сили тертя і нормального до поверхні тиску можна визначити μ, яке є величиною постійною для цього випадку. Знаючи силу тертя та силу нормального тиску (цю силу називають ще силою реакції опори), можна обчислити коефіцієнт тертя. З наведеної формули випливає, що: μ = F тр: N
  2. Розглядаємо графік залежності. Візьмемо будь-яку точку графіка, наприклад, коли N = 12(Н), а F тр = 1,5(Н).
  3. Візьмемо вибрані значення сил та обчислимо значення коефіцієнта μ : μ= 1,5/12 = 0,125

Відповідь: 0,125

Перший варіант завдання (Демідова, №3)

Сила F повідомляє тілу масою m прискорення a в інерційній системі відліку. Визначте прискорення тіла масою 2m під дією сили 0,5F у цій системі відліку.

1) ; 2) ; 3) ; 4)

Алгоритм рішення:
  1. Записуємо другий закон Ньютона. Висловлюємо прискорення із формули.
  2. Підставляємо в отриманий вираз змінені значення маси та сили і знаходимо нове значення прискорення, виражене через його початкове значення.
  3. Вибираємо правильну відповідь.
Рішення:

1. Згідно з другим законом Ньютона F=m a, сила F, що діє на тіло масою m, повідомляє тілу прискорення а. Маємо:

2. За умовою m 2 = 2m, F 2 =0,5F.

Тоді змінене прискорення дорівнюватиме:

У векторній формі запис аналогічний.

Другий варіант завдання (Демідова, №9)

Камінь масою 200 г кинутий під кутом 60 ° до горизонту з початковою швидкістю v = 20 м/с. Визначте модуль сили тяжіння, що діє на камінь у верхній точці траєкторії.

Якщо тіло кинуто під кутом до горизонту і силою опору можна знехтувати, рівнодіюча сил постійна. Вертикальна складова руху залежить від сил, які діють тіло. Необхідно знання формули сили тяжіння F = mg, оскільки, як правило, діє на тіло, кинуте під кутом до горизонту, тільки вона.

Алгоритм рішення:
  1. Перекладаємо СІ значення маси.
  2. Визначаємо які сили діють на камінь.
  3. Записуємо формулу сили тяжіння. Обчислюємо величину сили.
  4. Записуємо відповідь.
Рішення:
  1. Маса каменю m=200 г=0,2 кг.
  2. На кинутий камінь діє сила тяжіння Fт = mg. Оскільки в умові не обумовлено протилежне, то опір повітря можна знехтувати.
  3. Сила тяжіння однакова у будь-якій точці траєкторії каменю. Це означає дані в умові (поч. швидкість vі кут до горизонту, під яким кинуто тіло) надмірні. Звідси отримуємо: Fт = 0,2∙10 =2 Н.

Відповідь : 2

Третій варіант завдання (Демідова, №27)

До системи з кубика масою 1 кг і двох пружин додано постійну горизонтальну силу величиною F = 9 Н (див. малюнок). Система спочиває. Між кубиком та опорою тертя немає. Лівий край першої пружини прикріплений до стінки. Жорсткість першої пружини k1 = 300 Н/м. Жорсткість другої пружини k2 = 600 Н/м. Чому дорівнює подовження другої пружини?

Алгоритм рішення:
  1. Записуємо закон Гука для 2-ї пружини. Знаходимо її зв'язок з даною умовою силою F.
  2. З отриманого рівняння виражаємо подовження, обчислюємо його.
  3. Записуємо відповідь.
Рішення:
  1. За законом Гука подовження пружини пов'язане з жорсткістю k пружини та доданої до неї сили Fвиразом F= kl. На другу пружину діє сила, що розтягує її. F 2 = k2∆ l. 1-а пружина розтягується силою F. За умовою F=9 H. Оскільки пружини становлять єдину систему, сила F розтягує і другий пружину, тобто. F 2 =F.
  2. Подовження Δ lвизначається так:

Підготовка до ОДЕ та ЄДІ

Середня загальна освіта

Лінія УМК А. В. Грачова. Фізика (10-11) (баз., поглибл.)

Лінія УМК А. В. Грачова. Фізика (7-9)

Лінія УМК А. В. Перишкіна. Фізика (7-9)

Підготовка до ЄДІ з фізики: приклади, рішення, пояснення

Розбираємо завдання ЄДІ з фізики (Варіант С) з учителем.

Лебедєва Алевтина Сергіївна, учитель фізики, стаж роботи 27 років. Почесна грамота Міністерства освіти Московської області (2013), Подяка Глави Воскресенського муніципального району (2015), Грамота Президента Асоціації вчителів математики та фізики Московської області (2015).

У роботі представлені завдання різних рівнів складності: базового, підвищеного та високого. Завдання базового рівня, це прості завдання, що перевіряють засвоєння найважливіших фізичних понять, моделей, явищ та законів. Завдання підвищеного рівня спрямовані на перевірку вміння використовувати поняття та закони фізики для аналізу різних процесів та явищ, а також вміння вирішувати завдання на застосування одного-двох законів (формул) з якоїсь теми шкільного курсу фізики. У роботі 4 завдання частини 2 є завданнями високого рівня складності та перевіряють вміння використовувати закони та теорії фізики у зміненій чи новій ситуації. Виконання таких завдань вимагає застосування знань з двох трьох розділів фізики, тобто. найвищого рівня підготовки. Цей варіант повністю відповідає демонстраційному варіанту ЄДІ 2017 року, завдання взяті з відкритого банку завдань ЄДІ.

На малюнку представлений графік залежності модуля швидкості від часу t. Визначте за графіком шлях, пройдений автомобілем в інтервалі часу від 0 до 30 с.


Рішення.Шлях, пройдений автомобілем в інтервалі часу від 0 до 30 с найпростіше визначити як площу трапеції, основами якої є інтервали часу (30 – 0) = 30 c та (30 – 10) = 20 с, а висотою є швидкість v= 10 м/с, тобто.

S = (30 + 20) з 10 м/с = 250 м-коду.
2

Відповідь. 250 м.

Вантаж масою 100 кг піднімають вертикально нагору за допомогою троса. На малюнку наведено залежність проекції швидкості Vвантажу на вісь, спрямовану вгору, від часу t. Визначте модуль сили натягу троса протягом підйому.



Рішення.За графіком залежності проекції швидкості vвантажу на вісь, спрямовану вертикально вгору, від часу t, можна визначити проекцію прискорення вантажу

a = v = (8 – 2) м/с = 2 м/с2.
t 3 с

На вантаж діють: сила тяжіння, спрямована вертикально вниз і сила натягу троса, спрямована вздовж троса вертикально вгору дивись рис. 2. Запишемо основне рівняння динаміки. Скористаємося другим законом Ньютона. Геометрична сума сил діючих на тіло дорівнює добутку маси тіла на прискорення, що повідомляється йому.

+ = (1)

Запишемо рівняння для проекції векторів у системі відліку, пов'язаної із землею, ось OY направимо нагору. Проекція сили натягу позитивна, оскільки напрямок сили збігається з напрямком осі OY, проекція сили тяжіння негативна, так як вектор сили протилежно спрямований осі OY, проекція вектора прискорення також позитивна, так тіло рухається з прискоренням вгору. Маємо

Tmg = ma (2);

із формули (2) модуль сили натягу

Т = m(g + a) = 100 кг (10 + 2) м/с 2 = 1200 Н.

Відповідь. 1200 Н.

Тіло тягнуть по шорсткої горизонтальної поверхні з постійною швидкістю модуль якої дорівнює 1, 5 м/с, прикладаючи до нього силу так, як показано на малюнку (1). При цьому модуль сили тертя ковзання, що діє на тіло, дорівнює 16 Н. Чому дорівнює потужність, що розвивається силою F?



Рішення.Уявімо собі фізичний процес, заданий за умови завдання і зробимо схематичний креслення із зазначенням усіх сил, які діють тіло (рис.2). Запишемо основне рівняння динаміки.

Тр + + = (1)

Вибравши систему відліку, пов'язану з нерухомою поверхнею, запишемо рівняння проекції векторів на вибрані координатні осі. За умовою завдання тіло рухається рівномірно, тому що його швидкість постійна та дорівнює 1,5 м/с. Це означає, що прискорення тіла дорівнює нулю. По горизонталі тіло діють дві сили: сила тертя ковзання тр. і сила, з якою тіло тягнуть. Проекція сили тертя негативна, оскільки вектор сили не збігається із напрямком осі Х. Проекція сили Fпозитивна. Нагадуємо, для знаходження проекції опускаємо перпендикуляр із початку та кінця вектора на обрану вісь. З огляду на це маємо: F cosα – Fтр = 0; (1) висловимо проекцію сили F, це F cosα = Fтр = 16 Н; (2) тоді потужність, що розвивається силою, буде рівна N = F cosα V(3) Зробимо заміну, враховуючи рівняння (2), та підставимо відповідні дані до рівняння (3):

N= 16 Н · 1,5 м/с = 24 Вт.

Відповідь. 24 Вт.

Вантаж, закріплений на легкій пружині жорсткістю 200 Н/м, робить вертикальні коливання. На малюнку представлений графік залежності усунення xвантажу від часу t. Визначте, чому дорівнює маса вантажу. Відповідь округліть до цілого числа.


Рішення.Вантаж на пружині робить вертикальні коливання. За графіком залежності усунення вантажу хвід часу t, Визначимо період коливань вантажу. Період коливань дорівнює Т= 4; із формули Т= 2π висловимо масу mвантажу.


= T ; m = T 2 ; m = k T 2 ; m= 200 H/м (4 с) 2 = 81,14 кг ≈ 81 кг.
k 4π 2 4π 2 39,438

Відповідь: 81 кг.

На малюнку показано систему двох легких блоків і невагомого троса, за допомогою якого можна утримувати в рівновазі або піднімати вантаж масою 10 кг. Тертя зневажливо мало. На підставі аналізу наведеного малюнка виберіть двавірних затвердження та вкажіть у відповіді їх номери.


  1. Щоб утримувати вантаж у рівновазі, потрібно діяти на кінець мотузки з силою 100 Н.
  2. Зображена малюнку система блоків не дає виграшу у силі.
  3. h, потрібно витягнути ділянку мотузки завдовжки 3 h.
  4. Для того, щоб повільно підняти вантаж на висоту hh.

Рішення.У цій задачі необхідно згадати прості механізми, а саме блоки: рухомий та нерухомий блок. Рухомий блок дає виграш в силі вдвічі, при цьому ділянку мотузки потрібно витягнути вдвічі довше, а нерухомий блок використовують для перенаправлення сили. У роботі прості механізми виграшу не дають. Після аналізу завдання відразу вибираємо потрібні твердження:

  1. Для того, щоб повільно підняти вантаж на висоту h, потрібно витягнути ділянку мотузки завдовжки 2 h.
  2. Щоб утримувати вантаж у рівновазі, потрібно діяти на кінець мотузки з силою 50 Н.

Відповідь. 45.

У посудину з водою повністю занурений алюмінієвий вантаж, закріплений на невагомій та нерозтяжній нитці. Вантаж не стосується стін та дна судини. Потім таку ж посудину з водою занурюють залізний вантаж, маса якого дорівнює масі алюмінієвого вантажу. Як у результаті цього зміняться модуль сили натягу нитки і модуль сили тяжіння, що діє на вантаж?

  1. Збільшується;
  2. Зменшується;
  3. Не змінюється.


Рішення.Аналізуємо умову завдання та виділяємо ті параметри, які не змінюються в ході дослідження: це маса тіла та рідина, в яку занурюють тіло на нитки. Після цього краще виконати схематичний малюнок і вказати сили, що діють на вантаж: сила натягу нитки Fупр, спрямована вздовж нитки догори; сила тяжіння, спрямована вертикально вниз; архімедова сила a, що діє з боку рідини на занурене тіло та спрямована вгору. За умовою завдання маса вантажів однакова, отже, модуль сили тяжіння, що діє на вантаж, не змінюється. Так як щільність вантажів різна, то обсяг теж буде різним

V = m .
p

Щільність заліза 7800 кг/м 3 а алюмінієвого вантажу 2700 кг/м 3 . Отже, Vж< V a. Тіло в рівновазі, що рівнодіє всіх сил, що діють на тіло дорівнює нулю. Направимо координатну вісь OY вгору. Основне рівняння динаміки з урахуванням проекції сил запишемо у вигляді Fупр + F amg= 0; (1) Виразимо силу натягу Fупр = mgF a(2); архімедова сила залежить від щільності рідини та об'єму зануреної частини тіла F a = ρ gVп.ч.т. (3); Щільність рідини не змінюється, а об'єм тіла із заліза менший Vж< V aтому архімедова сила, що діє на залізний вантаж буде меншою. Робимо висновок про модуль сили натягу нитки, працюючи з рівняння (2), він зросте.

Відповідь. 13.

Брусок масою mзісковзує із закріпленою шорсткою похилою площиною з кутом α при підставі. Модуль прискорення бруска дорівнює a, модуль швидкості бруска зростає. Опір повітря можна знехтувати.

Встановіть відповідність між фізичними величинами та формулами, за допомогою яких їх можна обчислити. До кожної позиції першого стовпця підберіть відповідну позицію другого стовпця і запишіть у таблицю вибрані цифри під відповідними літерами.

Б) Коефіцієнт тертя бруска про похилу площину

3) mg cosα

4) sinα - a
g cosα

Рішення.Це завдання вимагає застосування законів Ньютона. Рекомендуємо зробити схематичне креслення; вказати усі кінематичні характеристики руху. Якщо можливо, зобразити вектор прискорення і вектори всіх сил, прикладених до тіла, що рухається; пам'ятати, що сили, які діють тіло, – результат взаємодії коїться з іншими тілами. Потім записати основне рівняння динаміки. Вибрати систему відліку та записати отримане рівняння для проекції векторів сил та прискорень;

Дотримуючись запропонованого алгоритму, зробимо схематичне креслення (рис. 1). На малюнку зображені сили, прикладені до центру ваги бруска, та координатні осі системи відліку, пов'язаної з поверхнею похилої площини. Так як всі сили постійні, то рух бруска буде рівнозмінним з швидкістю, що збільшується, тобто. вектор прискорення спрямований у бік руху. Виберемо напрямок осей як зазначено на малюнку. Запишемо проекції сил на обрані осі.


Запишемо основне рівняння динаміки:

Тр + = (1)

Запишемо дане рівняння (1) для проекції сил та прискорення.

На вісь OY: проекція сили реакції опори позитивна, тому що вектор збігається із напрямком осі OY N y = N; проекція сили тертя дорівнює нулю оскільки вектор перпендикулярний осі; проекція сили тяжіння буде негативною і рівною mg y= mg cosα; проекція вектор прискорення a y= 0, так як вектор прискорення перпендикулярний до осі. Маємо Nmg cosα = 0 (2) з рівняння виразимо силу реакції, що діє на брусок, з боку похилої площини. N = mg cosα (3). Запишемо проекції на вісь OX.

На вісь OX: проекція сили Nдорівнює нулю, так як вектор перпендикулярний осі ОХ; Проекція сили тертя негативна (вектор направлений протилежний бік щодо обраної осі); проекція сили тяжіння позитивна і дорівнює mg x = mg sinα (4) із прямокутного трикутника. Проекція прискорення позитивна a x = a; Тоді рівняння (1) запишемо з урахуванням проекції mg sinα – Fтр = ma (5); Fтр = m(g sinα – a) (6); Пам'ятаємо, що сила тертя пропорційна силі нормального тиску N.

За визначенням Fтр = μ N(7), виразимо коефіцієнт тертя бруска про похилу площину.

μ = Fтр = m(g sinα – a) = tgα - a (8).
N mg cosα g cosα

Вибираємо відповідні позиції кожної літери.

Відповідь. A – 3; Б - 2.

Завдання 8. Газоподібний кисень знаходиться у посудині об'ємом 33,2 літри. Тиск газу 150 кПа, його температура 127 ° С. Визначте масу газу в цій посудині. Відповідь висловіть у грамах та округліть до цілого числа.

Рішення.Важливо звернути увагу до переведення одиниць у систему СИ. Температуру переводимо до Кельвінів T = t°С + 273, обсяг V= 33,2 л = 33,2 · 10 -3 м 3; Тиск переводимо P= 150 кПа = 150000 Па. Використовуючи рівняння стану ідеального газу

висловимо масу газу.

Обов'язково звертаємо увагу, у яких одиниця просять записати відповідь. Це дуже важливо.

Відповідь. 48 р.

Завдання 9.Ідеальний одноатомний газ у кількості 0,025 моль адіабатично розширився. При цьому його температура знизилася з +103 до +23°С. Яку роботу здійснив газ? Відповідь висловіть у Джоулях і округліть до цілого числа.

Рішення.По-перше, газ одноатомне число ступенів свободи i= 3, по-друге, газ розширюється адіабатично - це означає без теплообміну Q= 0. Газ здійснює роботу рахунок зменшення внутрішньої енергії. З огляду на це перший закон термодинаміки запишемо у вигляді 0 = ∆ U + Aг; (1) висловимо роботу газу Aг = –∆ U(2); Зміну внутрішньої енергії для одноатомного газу запишемо як

Відповідь. 25 Дж.

Відносна вологість порції повітря за певної температури дорівнює 10 %. У скільки разів слід змінити тиск цієї порції повітря для того, щоб за незмінної температури його відносна вологість збільшилася на 25 %?

Рішення.Питання, пов'язані з насиченою парою та вологістю повітря, найчастіше викликають труднощі у школярів. Скористаємося формулою для розрахунку відносної вологості повітря

За умовою завдання температура не змінюється, отже, тиск насиченої пари залишається тим самим. Запишемо формулу (1) для двох станів повітря.

φ 1 = 10%; φ 2 = 35%

Виразимо тиск повітря з формул (2), (3) і знайдемо відношення тисків.

P 2 = φ 2 = 35 = 3,5
P 1 φ 1 10

Відповідь.Тиск слід збільшити у 3,5 рази.

Гаряча речовина в рідкому стані повільно охолоджувалося у плавильній печі з постійною потужністю. У таблиці наведено результати вимірювань температури речовини з часом.

Виберіть із запропонованого переліку двазатвердження, які відповідають результатам проведених вимірювань та вкажіть їх номери.

  1. Температура плавлення речовини в умовах дорівнює 232°С.
  2. Через 20 хв. після початку вимірювань речовина знаходилася лише у твердому стані.
  3. Теплоємність речовини в рідкому та твердому стані однакова.
  4. Через 30 хв. після початку вимірювань речовина знаходилася лише у твердому стані.
  5. Процес кристалізації речовини зайняв понад 25 хвилин.

Рішення.Оскільки речовина охолоджувалося, його внутрішня енергія зменшувалася. Результати вимірювання температури дозволяють визначити температуру, при якій речовина починає кристалізуватися. Поки речовина переходить із рідкого стану у твердий, температура не змінюється. Знаючи, що температура плавлення та температура кристалізації однакові, вибираємо твердження:

1. Температура плавлення речовини в умовах дорівнює 232°С.

Друге вірне твердження це:

4. Через 30 хв. після початку вимірювань речовина знаходилася лише у твердому стані. Так як температура в цей момент часу вже нижче температури кристалізації.

Відповідь. 14.

В ізольованій системі тіло А має температуру 40°С, а тіло Б температуру 65°С. Ці тіла привели до теплового контакту один з одним. Через деякий час настала теплова рівновага. Як у результаті змінилася температура тіла Б та сумарна внутрішня енергія тіла А та Б?

Для кожної величини визначте відповідний характер зміни:

  1. Збільшилась;
  2. Зменшилась;
  3. Не змінилась.

Запишіть у таблиці вибрані цифри кожної фізичної величини. Цифри у відповіді можуть повторюватися.

Рішення.Якщо в ізольованій системі тіл не відбувається жодних перетворень енергії крім теплообміну, то кількість теплоти, віддана тілами, внутрішня енергія яких зменшується, дорівнює кількості теплоти, отриманої тілами, внутрішня енергія яких збільшується. (За законом збереження енергії.) У цьому сумарна внутрішня енергія системи змінюється. Завдання такого типу вирішуються виходячи з рівняння теплового балансу.

U = ∑ n U i = 0 (1);
i = 1

де ∆ U- Зміна внутрішньої енергії.

У нашому випадку в результаті теплообміну внутрішня енергія тіла Б зменшується, а отже, зменшується температура цього тіла. Внутрішня енергія тіла А збільшується, оскільки тіло отримало кількість теплоти від тіла Б, температура його збільшиться. Сумарна внутрішня енергія тіл А та Б не змінюється.

Відповідь. 23.

Протон p, що влетів у зазор між полюсами електромагніта, має швидкість перпендикулярну вектору індукції магнітного поля, як показано на малюнку. Куди спрямована сила Лоренца, що діє на протон, щодо малюнка (вгору, до спостерігача, від спостерігача, вниз, вліво, вправо)


Рішення.На заряджену частинку магнітне поле діє із силою Лоренца. Щоб визначити напрямок цієї сили, важливо пам'ятати мнемонічне правило лівої руки, не забувати враховувати заряд частки. Чотири пальці лівої руки направляємо по вектору швидкості, для позитивно зарядженої частинки, вектор повинен перпендикулярно входити в долоню, великий палець відставлений на 90° показує напрямок сили Лоренца, що діє на частинку. Внаслідок цього маємо, що вектор сили Лоренца спрямований від спостерігача щодо малюнка.

Відповідь.від спостерігача.

Модуль напруженості електричного поля в плоскому повітряному конденсаторі ємністю 50 мкФ дорівнює 200 В/м. Відстань між пластинами конденсатора 2 мм. Чому дорівнює заряд конденсатора? Відповідь запишіть у мкКл.

Рішення.Перекладемо всі одиниці виміру до системи СІ. Місткість С = 50 мкФ = 50 · 10 -6 Ф, відстань між пластинами d= 2 · 10 –3 м. У задачі йдеться про плоский повітряний конденсатор – пристрій для накопичення електричного заряду та енергії електричного поля. З формули електричної ємності

де d- Відстань між пластинами.

Виразимо напругу U= E · d(4); Підставимо (4) (2) і розрахуємо заряд конденсатора.

q = C · Ed= 50 · 10 -6 · 200 · 0,002 = 20 мкКл

Звертаємо увагу, у яких одиницях слід записати відповідь. Отримали в кулонах, а репрезентуємо в мкКл.

Відповідь. 20 мкКл.


Учень провів досвід із заломлення світла, представлений на фотографії. Як змінюється при збільшенні кута падіння кут заломлення світла, що розповсюджується у склі, та показник заломлення скла?

  1. Збільшується
  2. Зменшується
  3. Не змінюється
  4. Запишіть у таблиці вибрані цифри для кожної відповіді. Цифри у відповіді можуть повторюватися.

Рішення.У завдання такого плану згадуємо, що таке заломлення. Це зміна напряму поширення хвилі при проходженні з одного середовища до іншого. Викликано воно тим, що швидкості поширення хвиль у середовищі різні. Розібравшись із якого середовища у яке світло поширюється, запишемо закону заломлення у вигляді

sinα = n 2 ,
sinβ n 1

де n 2 - абсолютний показник заломлення скла, середовище куди йде світло; n 1 - абсолютний показник заломлення першого середовища, звідки світло йде. Для повітря n 1 = 1. α – кут падіння променя на поверхню скляного напівциліндра, β – кут заломлення променя у склі. Причому кут заломлення буде меншим за кут падіння, оскільки скло оптично більш щільне середовище – середовище з великим показником заломлення. Швидкість поширення світла у склі менша. Звертаємо увагу, що кути вимірюємо від перпендикуляра, відновленого у точці падіння променя. Якщо збільшувати кут падіння, то кут заломлення зростатиме. Показник заломлення скла від цього не змінюватиметься.

Відповідь.

Мідна перемичка в момент часу t 0 = 0 починає рухатися зі швидкістю 2 м/с по паралельних горизонтальних провідних рейках, до кінців яких приєднаний резистор опором 10 Ом. Вся система знаходиться у вертикальному однорідному магнітному полі. Опір перемички і рейок дуже мало, перемичка весь час розташована перпендикулярно рейкам. Потік Ф вектора магнітної індукції через контур, утворений перемичкою, рейками та резистором, змінюється з часом tтак, як показано на графіку.


Використовуючи графік, виберіть два правильних затвердження та вкажіть у відповіді їх номери.

  1. На момент часу t= 0,1 зі зміна магнітного потоку через контур дорівнює 1 мВб.
  2. Індукційний струм у перемичці в інтервалі від t= 0,1 с t= 0,3 з максимальним.
  3. Модуль ЕРС індукції, що виникає у контурі, дорівнює 10 мВ.
  4. Сила індукційного струму, що тече в перемичці, дорівнює 64 мА.
  5. Для підтримки руху перемички до неї прикладають силу, проекція якої напрямок рейок дорівнює 0,2 Н.

Рішення.За графіком залежності потоку вектора магнітної індукції через контур від часу визначимо ділянки, де потік Ф змінюється, і зміна потоку дорівнює нулю. Це дозволить нам визначити інтервали часу, коли в контурі виникатиме індукційний струм. Вірне твердження:

1) На момент часу t= 0,1 із зміна магнітного потоку через контур дорівнює 1 мВб ∆Ф = (1 – 0) · 10 –3 Вб; Модуль ЕРС індукції, що виникає в контурі, визначимо, використовуючи закон ЕМІ.

Відповідь. 13.


За графіком залежності сили струму від часу в електричному ланцюзі, індуктивність якого дорівнює 1 мГн, визначте модуль ЕРС самоіндукції в інтервалі часу від 5 до 10 с. Відповідь запишіть у мкВ.

Рішення.Переведемо всі величини систему СІ, тобто. індуктивність 1 мГн переведемо в Гн, отримаємо 10 -3 Гн. Силу струму, показаної малюнку в мА також будемо перекладати А шляхом множення на величину 10 –3 .

Формула ЕРС самоіндукції має вигляд

при цьому інтервал часу дано за умовою задачі

t= 10 c - 5 c = 5 c

секунд та за графіком визначаємо інтервал зміни струму за цей час:

I= 30 · 10 -3 - 20 · 10 -3 = 10 · 10 -3 = 10 -2 A.

Підставляємо числові значення формулу (2), отримуємо

| Ɛ | = 2 · 10 -6 В, або 2 мкВ.

Відповідь. 2.

Дві прозорі плоскопаралельні пластинки щільно притиснуті одна до одної. З повітря поверхню першої пластинки падає промінь світла (див. малюнок). Відомо, що показник заломлення верхньої платівки дорівнює n 2 = 1,77. Встановіть відповідність між фізичними величинами та їх значеннями. До кожної позиції першого стовпця підберіть відповідну позицію другого стовпця і запишіть у таблицю вибрані цифри під відповідними літерами.


Рішення.Для вирішення задач про заломлення світла на межі розділу двох середовищ, зокрема задач на проходження світла через плоскопаралельні пластинки можна рекомендувати наступний порядок розв'язання: зробити креслення із зазначенням ходу променів, що йдуть з одного середовища до іншого; у точці падіння променя на межі розділу двох середовищ провести нормаль до поверхні, відзначити кути падіння та заломлення. Особливо звернути увагу на оптичну щільність середовищ і пам'ятати, що при переході променя світла з оптично менш щільного середовища в оптично більш щільне середовище кут заломлення буде менше кута падіння. На малюнку дано кут між падаючим променем і поверхнею, а нам потрібен кут падіння. Пам'ятаємо, що кути визначаються від перпендикуляра, відновленого у точці падіння. Визначаємо, що кут падіння променя на поверхню 90 ° - 40 ° = 50 °, показник заломлення n 2 = 1,77; n 1 = 1 (повітря).

Запишемо закон заломлення

sinβ = sin50 = 0,4327 ≈ 0,433
1,77

Побудуємо зразковий хід променя через платівки. Використовуємо формулу (1) для межі 2–3 та 3–1. У відповіді отримуємо

А) Синус кута падіння променя на межу 2–3 між пластинками – це 2) ≈ 0,433;

Б) Кут заломлення променя під час переходу кордону 3–1 (у радіанах) – це 4) ≈ 0,873.

Відповідь. 24.

Визначте, скільки α – частинок та скільки протонів виходить у результаті реакції термоядерного синтезу

+ → x+ y;

Рішення.При всіх ядерних реакціях дотримуються законів збереження електричного заряду та числа нуклонів. Позначимо через x кількість альфа частинок, y кількість протонів. Складемо рівняння

+ → x + y;

вирішуючи систему маємо, що x = 1; y = 2

Відповідь. 1 - α-частка; 2 – протона.

Модуль імпульсу першого фотона дорівнює 1,32 · 10 -28 кг · м / с, що на 9,48 · 10 -28 кг · м / с менше, ніж модуль імпульсу другого фотона. Знайдіть відношення енергії E 2 /E 1 другого та першого фотонів. Відповідь округліть до десятих часток.

Рішення.Імпульс другого фотона більший за імпульс першого фотона за умовою означає можна уявити p 2 = p 1 + Δ p(1). Енергію фотона можна виразити через імпульс фотона, використовуючи такі рівняння. Це E = mc 2 (1) та p = mc(2), тоді

E = pc (3),

де E- Енергія фотона, p- Імпульс фотона, m - маса фотона, c= 3 · 10 8 м/с – швидкість світла. З урахуванням формули (3) маємо:

E 2 = p 2 = 8,18;
E 1 p 1

Відповідь округляємо до десятих та отримуємо 8,2.

Відповідь. 8,2.

Ядро атома зазнало радіоактивного позитронного - розпад. Як внаслідок цього змінювалися електричний заряд ядра та кількість нейтронів у ньому?

Для кожної величини визначте відповідний характер зміни:

  1. Збільшилась;
  2. Зменшилась;
  3. Не змінилась.

Запишіть у таблиці вибрані цифри кожної фізичної величини. Цифри у відповіді можуть повторюватися.

Рішення.Позитронний - розпад в атомному ядрі відбувається при перетворень протона в нейтрон з випусканням позитрону. Внаслідок цього число нейтронів у ядрі збільшується на одиницю, електричний заряд зменшується на одиницю, а масове число ядра залишається незмінним. Таким чином, реакція перетворення елемента така:

Відповідь. 21.

У лабораторії було проведено п'ять експериментів щодо спостереження дифракції за допомогою різних дифракційних ґрат. Кожна з ґрат висвітлювалася паралельними пучками монохроматичного світла з певною довжиною хвилі. Світло у всіх випадках падало перпендикулярно гратам. У двох із цих експериментів спостерігалося однакову кількість головних дифракційних максимумів. Вкажіть спочатку номер експерименту, в якому використовувалися дифракційні грати з меншим періодом, а потім номер експерименту, в якому використовувалися дифракційні грати з більшим періодом.

Рішення.Дифракцією світла називається явище світлового пучка область геометричної тіні. Дифракцію можна спостерігати в тому випадку, коли на шляху світлової хвилі зустрічаються непрозорі ділянки або отвори у великих за розмірами і непрозорих для світла перешкод, причому розміри цих ділянок або отворів можна порівняти з довжиною хвилі. Одним із найважливіших дифракційних пристроїв є дифракційна решітка. Кутові напрямки на максимуми дифракційної картини визначаються рівнянням

d sinφ = kλ (1),

де d– період дифракційної решітки, φ – кут між нормаллю до ґрат і напрямком на один з максимумів дифракційної картини, λ – довжина світлової хвилі, k- ціле число, зване порядком дифракційного максимуму. Виразимо з рівняння (1)

Підбираючи пари згідно з умовою експерименту, вибираємо спочатку 4 де використовували дифракційні грати з меншим періодом, а потім – номер експерименту, в якому використовували дифракційні грати з великим періодом – це 2.

Відповідь. 42.

По дротяному резистори тече струм. Резистор замінили на інший, з дротом з того ж металу і тієї ж довжини, але має вдвічі меншу площу поперечного перерізу, і пропустили через нього вдвічі менший струм. Як зміняться у своїй напруга на резисторі та її опір?

Для кожної величини визначте відповідний характер зміни:

  1. Збільшиться;
  2. Зменшиться;
  3. Не зміниться.

Запишіть у таблиці вибрані цифри кожної фізичної величини. Цифри у відповіді можуть повторюватися.

Рішення.Важливо пам'ятати яких величин залежить опір провідника. Формула для розрахунку опору має вигляд

закону Ома для ділянки ланцюга, з формули (2), виразимо напругу

U = I R (3).

За умовою завдання другий резистор виготовлений з дроту того самого матеріалу, тієї ж довжини, але різної площі поперечного перерізу. Площа вдвічі менша. Підставляючи (1) отримаємо, що опір збільшується в 2 рази, а сила струму зменшується в 2 рази, отже, напруга не змінюється.

Відповідь. 13.

Період коливань математичного маятника на поверхні Землі в 1,2 рази більший за період його коливань на деякій планеті. Чому дорівнює модуль прискорення вільного падіння на цій планеті? Вплив атмосфери в обох випадках дуже мало.

Рішення.Математичний маятник - це система, що складається з нитки, розміри якої набагато більше розмірів кульки і самої кульки. Складність може виникнути, якщо забута формула Томсона для періоду коливань математичного маятника.

T= 2π (1);

l- Довжина математичного маятника; g- прискорення вільного падіння.

За умовою

Виразимо з (3) gп = 14,4 м/с2. Слід зазначити, що прискорення вільного падіння залежить від маси планети та радіусу

Відповідь. 14,4 м/с 2 .

Прямолінійний провідник довжиною 1 м, яким тече струм 3 А, розташований в однорідному магнітному полі з індукцією У= 0,4 Тл під кутом 30 ° до вектора. Яким є модуль сили, що діє на провідник з боку магнітного поля?

Рішення.Якщо в магнітне поле, помістити провідник зі струмом, то поле на провідник зі струмом діятиме з силою Ампера. Запишемо формулу модуля сили Ампера

FА = I LB sinα;

FА = 0,6 Н

Відповідь. FА = 0,6 н.

Енергія магнітного поля, запасена в котушці при пропусканні через неї постійного струму, дорівнює 120 Дж. У скільки разів потрібно збільшити силу струму, що протікає через обмотку котушки, щоб запасена в ній енергія магнітного поля збільшилася на 5760 Дж.

Рішення.Енергія магнітного поля котушки розраховується за формулою

Wм = LI 2 (1);
2

За умовою W 1 = 120 Дж, тоді W 2 = 120 + 5760 = 5880 Дж.

I 1 2 = 2W 1 ; I 2 2 = 2W 2 ;
L L

Тоді відношення струмів

I 2 2 = 49; I 2 = 7
I 1 2 I 1

Відповідь.Силу струму потрібно збільшити у 7 разів. До бланку відповідей Ви вносите лише цифру 7.

Електричний ланцюг складається з двох лампочок, двох діодів та витка дроту, з'єднаних, як показано на малюнку. (Діод пропускає струм лише в одному напрямку, як показано на верхній частині малюнка). Яка лампочка загориться, якщо до витка наближати північний полюс магніту? Відповідь поясніть, вказавши, які явища та закономірності ви використовували при поясненні.


Рішення.Лінії магнітної індукції виходять із північного полюса магніту та розходяться. При наближенні магніту магнітний потік через виток дроту збільшується. Відповідно до правила Ленца магнітне поле, створюване індукційним струмом витка, має бути спрямоване праворуч. За правилом буравчика струм повинен йти за годинниковою стрілкою (якщо дивитися ліворуч). У цьому напрямку пропускає діод, що стоїть у ланцюзі другої лампи. Значить, загориться друга лампа.

Відповідь.Загориться друга лампа.

Алюмінієва спиця завдовжки L= 25 см та площею поперечного перерізу S= 0,1 см 2 підвішено на нитці за верхній кінець. Нижній кінець спирається на горизонтальне дно судини, в яку налита вода. Довжина зануреної у воду частини спиці l= 10 см. Знайти силу F, з якою спиця тисне на дно судини, якщо відомо, що нитка розташована вертикально. Щільність алюмінію ρ а = 2,7 г/см 3 щільність води ρ в = 1,0 г/см 3 . Прискорення вільного падіння g= 10 м/с 2

Рішення.Виконаємо пояснювальний малюнок.


- сила натягу нитки;

- Сила реакції дна судини;

a – архімедова сила, що діє тільки на занурену частину тіла, та прикладена до центру зануреної частини спиці;

- сила тяжкості, що діє на спицю з боку Землі та прикладена до центу всієї спиці.

За визначенням маса спиці mі модуль архімедової сили виражаються так: m = SLρ a (1);

F a = Slρ в g (2)

Розглянемо моменти сил щодо точки підвісу спиці.

М(Т) = 0 - момент сили натягу; (3)

М(N) = NL cosα – момент сили реакції опори; (4)

З урахуванням знаків моментів запишемо рівняння

NL cosα + Slρ в g (L l ) cosα = SLρ a g L cosα (7)
2 2

враховуючи, що за третім законом Ньютона сила реакції дна судини дорівнює силі Fд з якою спиця тисне на дно судини запишемо N = Fд і з рівняння (7) виразимо цю силу:

F д = [ 1 Lρ a– (1 – l )lρ в ] Sg (8).
2 2L

Підставимо числові дані та отримаємо, що

Fд = 0,025 Н.

Відповідь. Fд = 0,025 Н.

Балон, що містить m 1 = 1 кг азоту, при випробуванні на міцність вибухнув за температури t 1=327°С. Яку масу водню m 2 можна було б зберігати в такому балоні за температури t 2 = 27 ° С, маючи п'ятикратний запас міцності? Молярна маса азоту M 1 = 28 г/моль, водню M 2 = 2 г/моль.

Рішення.Запишемо рівняння стану ідеального газу Менделєєва – Клапейрону для азоту

де V- Об'єм балона, T 1 = tДенна температура повітря 1 +273°C. За умовою водень можна зберігати при тиску p 2 = p 1/5; (3) Враховуючи, що

можемо висловити масу водню працюючи разом із рівняннями (2), (3), (4). Кінцева формула має вигляд:

m 2 = m 1 M 2 T 1 (5).
5 M 1 T 2

Після встановлення числових даних m 2 = 28 р.

Відповідь. m 2 = 28 р.

В ідеальному коливальному контурі амплітуда коливань сили струму в котушці індуктивності I m= 5 мА, а амплітуда напруги на конденсаторі U m= 2,0 В. У момент часу tнапруга на конденсаторі дорівнює 1,2 В. Знайдіть силу струму в котушці в цей момент.

Рішення.В ідеальному коливальному контурі зберігається енергія коливань. Для моменту часу t закон збереження енергій має вигляд

C U 2 + L I 2 = L I m 2 (1)
2 2 2

Для амплітудних (максимальних) значень запишемо

а з рівняння (2) виразимо

C = I m 2 (4).
L U m 2

Підставимо (4) до (3). В результаті отримаємо:

I = I m (5)

Таким чином, сила струму в котушці в момент часу tдорівнює

I= 4,0 мА.

Відповідь. I= 4,0 мА.

На дні водоймища глибиною 2 м лежить дзеркало. Промінь світла, пройшовши через воду, відбивається від дзеркала і виходить із води. Показник заломлення води дорівнює 1,33. Знайдіть відстань між точкою входу променя у воду та точкою виходу променя з води, якщо кут падіння променя дорівнює 30°

Рішення.Зробимо пояснювальний малюнок


α – кут падіння променя;

β – кут заломлення променя у воді;

АС – відстань між точкою входу променя у воду та точкою виходу променя з води.

За законом заломлення світла

sinβ = sinα (3)
n 2

Розглянемо прямокутний АDВ. У ньому АD = hтоді DВ = АD

tgβ = h tgβ = h sinα = h sinβ = h sinα (4)
cosβ

Отримуємо такий вираз:

АС = 2 DВ = 2 h sinα (5)

Підставимо числові значення отриману формулу (5)

Відповідь. 1,63м.

У рамках підготовки до ЄДІ пропонуємо вам ознайомитись з робочою програмою з фізики для 7-9 класу до лінії УМК Перишкіна О. В.і робочою програмою поглибленого рівня для 10-11 класів до МК Мякішева Г.Я.Програми доступні для перегляду та безкоштовного скачування всім зареєстрованим користувачам.

У цій статті подано розбір завдань з механіки (динаміки та кінематики) з першої частини ЄДІ з фізики з докладними поясненнями від репетитора з фізики. Є відеорозбір всіх завдань.

Виділимо на графіку ділянку, що відповідає інтервалу часу від 8 до 10 с:

Тіло рухалося цьому інтервалі часу з однаковим прискоренням, оскільки графік тут є ділянкою прямий лінії. За ці швидкість тіла змінилася на м/с. Отже, прискорення тіла в цей проміжок часу дорівнювало м/с 2 . Підходить графік під номером 3 (у будь-який час прискорення дорівнює -5 м/с 2).


2. На тіло діють дві сили: і . За силою та рівнодією двох сил знайдіть модуль другої сили (див. рисунок).

Вектор другої сили дорівнює . Або, що аналогічно, . Тоді складемо два останні вектори за правилом паралелограма:

Довжину сумарного вектора можна знайти з прямокутного трикутника ABC, катети якого AB= 3 Н і BC= 4 Н. За теоремою Піфагора отримуємо, що довжина вектора, що шукається, дорівнює н.

Введемо систему координат з центром, що збігається з центром мас бруска, та віссю OX, спрямованої вздовж похилої площини. Зобразимо сили, що діють на брусок: силу тяжіння, силу реакції опори та силу тертя спокою. В результаті вийде наступний малюнок:

Тіло спочиває, тому векторна сума всіх сил, що діють на нього дорівнює нулю. У тому числі дорівнює нулю та сума проекцій сил на вісь OX.

Проекція сили тяжіння на вісь OXдорівнює катету ABвідповідного прямокутного трикутника (див. рисунок). При цьому з геометричних міркувань цей катет лежить навпроти кута. Тобто проекція сили тяжіння на вісь OXдорівнює.

Сила тертя спокою спрямована вздовж осі OXтому проекція цієї сили на вісь OXдорівнює просто довжині цього вектора, але з протилежним знаком, оскільки вектор спрямований проти осі OX. В результаті отримуємо:

Використовуємо відому зі шкільного курсу фізики формулу:

Визначимо за малюнком амплітуди вимушених коливань, що встановилися, при частотах вимушальної сили 0,5 Гц і 1 Гц:

З малюнка видно, що при частоті вимушує сили 0,5 Гц амплітуда встановилися вимушених коливань становила 10 см. Отже, амплітуда встановилися вимушений коливань.

6. Кулька, кинута горизонтально з висоти Hз початковою швидкістю, за час польоту tпролетів у горизонтальному напрямку відстань L(Див. малюнок). Що станеться з часом польоту та прискоренням кульки, якщо на тій же установці при незмінній початковій швидкості кульки збільшити висоту H? (Опір повітря знехтувати.) Для кожної величини визначте відповідний характер її зміни:

1) збільшиться

2) зменшиться

3) не зміниться

Запишіть у таблиці вибрані цифри кожної фізичної величини. Цифри у відповіді можуть повторюватися.

В обох випадках кулька рухатиметься з прискоренням вільного падіння, тому прискорення не зміниться. У разі час польоту від початкової швидкості залежить, оскільки остання спрямована горизонтально. Час польоту залежить від висоти, з якої падає тіло, причому чим більше висота, тим більше часу польоту (тілу довше падати). Отже час польоту збільшиться. Правильна відповідь: 13.