Ремонт Дизайн Мебель

Схема конденсатора турбины пт 80. По эксплуатации паровой турбины. Расход пара из уплотнений штоков клапанов в ДПВ принимаем

Теплофикационная паровая турбина ПТ-80/100-130/13 производственного объеди­нения турбостроения «Ленинградский металлический завод» (НОГ ЛМЗ) с промышлен­ным и отопительными отборами пара номинальной мощностью 80 МВт, максимальной 100 МВт с начальным давлением пара 12,8 МПа предназначена для непосредственного привода электрического генератора ТВФ-120-2 с частотой вращения 50 Гц и отпуска теп­ла для нужд производства и отопления.

При заказе турбины, а также в другой документации, где ее следует обозначать «Турбина паровая 1ГГ-80/100-130/13 ТУ 108-948-80».

Турбина ПТ-80/100-130/13 соответствует требованиям ГОСТ 3618-85, ГОСТ 24278-85 и ГОСТ 26948-86.

Турбина имеет следующие регулируемые отборы пара: производственный с абсо­лютным давлением (1,275±0,29) МПа и два отопительных отбора: верхний с абсолют­ным давлением в пределах 0,049-0,245 МПа и нижний с давлением в пределах 0,029-0,098 МПа.

Регулирование давления отопительного отбора осуществляется с помощью одной регулирующей диафрагмы, установленной в камере верхнего отопительного от­бора. Регулируемое давление в отопительных отборах поддерживается: в верхнем отбо­ре — при включенных обоих отопительных отборах, в нижнем отборе — при включенном одном нижнем отопительном отборе. Сетевая вода через сетевые подогреватели нижней и верхней ступеней подогрева пропускается последовательно и в одинаковом количест­ве. Расход воды, проходящей через сетевые подогреватели, контролируется.

Номинальные значения основных параметров турбины ПТ-80/100-130/13

Параметр ПТ-8О/100-130/13
1. Мощность, МВт
номинальная 80
максимальная 100
2. Начальные параметры пара:
давление, МПа 12.8
температура. °С 555
284 (78.88)
4. Расход отбираемого пара на производств. нужды, т/ч
номинальный 185
максимальный 300
5. Давление производственного отбора, МПа 1.28
6. Максимальный расход свежего пара, т/ч 470
7. Пределы изменения давления пара в регулируемых отопительных отборах пара, МПа
в верхнем 0.049-0.245
в нижнем 0.029-0.098
8. Температура воды, °С
питательной 249
охлаждающей 20
9. Расход охлаждающей воды, т/ч 8000
10. Давление пара в конденсаторе, кПа 2.84

При номинальных параметрах свежею пара, расходе охлаждающей воды 8000 м3/ч, температуре охлаждающей воды 20 °С, полностью включенной регенерации, количестве конденсата, подогреваемого в ПВД, равном 100% расхода пара через турби­ну, при работе турбоустановки с деаэратором 0,59 МПа, со ступенчатым подогревом се­тевой воды, при полном использовании пропускной способности турбины и минималь­ном пропуске пара в конденсатор могут быть взяты следующие величины отборов:

— номинальные величины регулируемых отборов при мощности 80 МВт;

— производственный отбор — 185 т/ч при абсолютном давлении 1,275 МПа;

— суммарный отопительный отбор — 285 ГДж/ч (132 т/ч) при абсолютных давлениях: в верхнем отборе — 0,088 МПа и в нижнем отборе — 0,034 МПа;

— максимальная величина производственного отбора при абсолютном давлении в камере отбора 1,275 МПа составляет 300 т/ч. При этой величине производственного от­бора и отсутствии отопительных отборов мощность турбины составляет -70 МВт. При номинальной мощности 80 МВт и отсутствии отопительных отборов максимальный про­изводственный отбор составит -250 т/ч;

— максимальная суммарная величина отопительных отборов равна 420 ГДж/ч (200 т/ч); при этой величине отопительных отборов и отсутствии производственного от­бора мощность турбины составляет около 75 МВт; при номинальной мощности 80 МВт и отсутствии производственного отбора максимальные отопительные отборы составят око­ло 250 ГДж/ч (-120 т/ч).

— максимальная мощность турбины при выключенных производственном и отопи­тельных отборах, при расходе охлаждающей воды 8000 м /ч с температурой 20 °С, пол­ностью включенной регенерации составит 80 МВт. Максимальная мощность турбины 100 МВт. получаемая при определенных сочетаниях производственного и отопительного отборов, зависит от величины отборов и определяется диафрагмой режимов.

Предусматривается возможность работы турбоустановки с пропуском подпиточной и сетевой воды через встроенный пучок

При охлаждении конденсатора сетевой водой турбина может работать по теплово­му графику. Максимальная тепловая мощность встроенного пучка составляет -130 ГДж/ч при поддержании температуры в выхлопной части не выше 80 °С.

Допускается длительная работа турбины с номинальной мощностью при следую­щих отклонениях основных параметров от номинальных:

  • при одновременном изменении в любых сочетаниях начальных параметров свеже­го пара — давления от 12,25 до 13,23 МПа и температуры от 545 до 560 °С; при этом тем­пература охлаждающей воды должна быть не выше 20 °С;
  • при повышении температуры охлаждающей воды при входе в конденсатор до 33 °С и расходе охлаждающей воды 8000 м3/ч, если начальные параметры свежего пара при этом не ниже номинальных;
  • при одновременном уменьшении величин производственного и отопительных от­боров пара до нуля.
  • при повышении давления свежего пара до 13,72 МПа и температуры до 565 °С до­пускается работа турбины в течение не более получаса, причем общая продолжитель­ность работы турбины при этих параметрах не должна превышать 200 ч/год.

Для данной турбинной установки ПТ-80/100-130/13 используеться подогреватель высокого давления №7 (ПВД-475-230-50-1). ПВД-7 работает при параметрах пара перед входом в подогреватель: давлении 4,41 МПа, температуре 420 °С и расходом пара 7,22 кг/с. Параметры питательной воды при этом: давление 15,93МПа, температура 233 °С и расход 130 кг/с.

Комплексная модернизация паровой турбины ПТ-80/100-130/13

Целью модернизации является увеличение электрической и теплофикационной мощности турбины с повышением экономичности турбоустановки. Модернизация в объеме основной опции заключается в установке сотовых надбандажных уплотнений ЦВД и замене проточной части среднего давления с изготовлением нового ротора НД с целью увеличения пропускной способности ЧСД до 383 т/ч. При этом сохраняется диапазон регулирования давления в производственном отборе, максимальный расход пара в конденсатор не изменяется.
Заменяемые узлы при модернизации турбоагрегата в объёме основной опции:

  • Установка сотовых надбандажных уплотнений 1-17 ступеней ЦВД;
  • Направляющий аппарат ЦСНД;
  • Седла РК ЧСД большего пропускного сечения с доработкой паровых коробок верхней половины корпуса ЧСД под установку новых крышек;
  • Регулирующие клапаны СД и кулачково-распределительное устройство;
  • Диафрагмы 19-27 ступеней ЦСНД, укомплектованные надбандажными сотовыми уплотнениями и уплотнительными кольцами с витыми пружинами;
  • Ротор СНД с установленными новыми рабочими лопатками 18-27 ступеней ЦСНД с цельнофрезерованными бандажами;
  • Обоймы диафрагм №1, 2, 3;
  • Обойма передних концевых уплотнений и уплотнительные кольца с витыми пружинами;
  • Насадные диски 28, 29, 30 ступеней сохраняются в соответствии с существующей конструкцией, что позволяет сократить затраты на проведение модернизации (при условии использования старых насадных дисков).
Кроме того, в объёме основной опции предусматривается установка в козырьки диафрагм сотовых надбандажных уплотнений 1-17 ступеней ЦВД с приваркой уплотняющих усов на бандажи рабочих лопаток.

В результате модернизации по основной опции достигается следующее:

  1. Увеличение максимальной электрической мощности турбины до 110 МВт и мощности теплофикационного отбора до 168,1 Гкал/ч, за счет сокращения промышленного отбора.
  2. Обеспечение надёжной и маневренной работы турбоустановки на всех эксплуатационных режимах работы, в том числе при минимально возможных давлениях в промышленном и теплофикационном отборах.
  3. Повышение показателей экономичности турбоустановки;
  4. Обеспечение стабильности достигнутых технико-экономических показателей в течение межремонтного периода.

Эффект от модернизации в объеме основного предложения:

Режимы турбоагрегата Электрическая мощность, МВт Расход пара на теплофикацию, т/ч Расход пара на производство, т/ч

Конденсационный

Номинальный

Максимальной мощности

С максимальным
теплофикационным отбором

Увеличение КПД ЧСД

Увеличение КПД ЦВД

Дополнительные предложения (опции) по модернизации

  • Модернизация обоймы регулирующей ступени ЦВД с установкой надбандажных сотовых уплотнений
  • Установка диафрагм последних ступеней с тангенциальным навалом
  • Высокогерметичные уплотнения штоков регулирующих клапанов ЦВД

Эффект от модернизации по дополнительным опциям


п/п

Наименование

Эффект

Модернизация обоймы регулирующей ступени ЦВД с установкой надбандажных сотовых уплотнений

Увеличение мощности на 0,21-0,24 МВт
- повышение КПД ЦВД на 0,3-0,4%
- повышение надежности работы


остановах турбин

Установка диафрагм последних ступеней с тангенциальным навалом

Конденсационный режим:
- увеличение мощности на 0,76 МВт
- повышение КПД ЦСНД 2,1%

Уплотнение поворотной диафрагмы

Повышение экономичности турбоустановки при работе в режиме с полностью закрытой поворотной диафрагмой 7 Гкал/час

Замена надбандажных уплотнений ЦВД и ЦСД на сотовые

Повышение КПД цилиндров (ЦВД на 1,2-1,4%, ЦСНД на 1%);
- увеличение мощности (ЦВД на 0,6-0,9 МВт, ЦСНД на 0,2 МВт);
- улучшение надёжности работы турбоагрегатов;
- обеспечение стабильности достигнутых технико-экономических
показателей в течение межремонтного периода;
- обеспечение надёжной, без снижения экономичности работы
надбандажных уплотнений ЦВД и ЦСД на переходных режимах,
в т.ч. при аварийных остановах турбин.

Замена регулирующих клапанов ЦВД

Увеличение мощности на 0,02-0,11 МВт
- повышение КПД ЦВД на 0,12%
- повышение надежности работы

Установка сотовых концевых уплотнений ЦНД

Устранение присосов воздуха через концевые уплотнения
- повышение надежности работы турбины
- повышение экономичности турбины
- стабильность достигнутых технико-экономических показателей
в течение всего межремонтного периода
- надёжная, без снижения экономичности работа концевых
уплотнений ЦНД в переходных режимах, в т.ч. при аварийных
остановах турбин

  • Tutorial

Предисловие к первой части

Моделирование паровых турбин — повседневная задача сотен людей в нашей стране. Вместо слова модель принято говорить расходная характеристика . Расходные характеристики паровых турбин используют при решении таких задач, как вычисление удельного расхода условного топлива на электроэнергию и тепло, производимые ТЭЦ; оптимизация работы ТЭЦ; планирование и ведение режимов ТЭЦ.


Мною разработана новая расходная характеристика паровой турбины — линеаризованная расходная характеристика паровой турбины. Разработанная расходная характеристика удобна и эффективна в решении указанных задач. Однако на текущий момент она описана лишь в двух научных работах:

  1. Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России ;
  2. Вычислительные методы определения удельных расходов условного топлива ТЭЦ на отпущенную электрическую и тепловую энергию в режиме комбинированной выработки .

И сейчас в своем блоге мне бы хотелось:

  • во-первых, простым и доступным языком ответить на основные вопросы о новой расходной характеристике (см. Линеаризованная расходная характеристика паровой турбины. Часть 1. Основные вопросы);
  • во-вторых, предоставить пример построения новой расходной характеристики, который поможет разобраться и в методе построения, и в свойствах характеристики (см. ниже);
  • в-третьих, опровергнуть два известных утверждения относительно режимов работы паровой турбины (см. Линеаризованная расходная характеристика паровой турбины. Часть 3. Развенчиваем мифы о работе паровой турбины).

1. Исходные данные

Исходными данными для построения линеаризованной расходной характеристики могут быть

  1. фактические значения мощностей Q 0 , N, Q п, Q т измеренные в процессе функционирования паровой турбины,
  2. номограммы q т брутто из нормативно-технической документации.
Конечно, фактические мгновенные значения Q 0 , N, Q п, Q т являются идеальными исходными данными. Сбор таких данных трудоемок.

В тех случаях, когда фактические значения Q 0 , N, Q п, Q т недоступны, можно обработать номограммы q т брутто. Они, в свою очередь, были получены на основании измерений. Подробнее об испытаниях турбин читайте в Горнштейн В.М. и др. Методы оптимизации режимов энергосистем .

2. Алгоритм построения линеаризованной расходной характеристики

Алгоритм построения состоит из трех шагов.

  1. Перевод номограмм или результатов измерений в табличный вид.
  2. Линеаризация расходной характеристики паровой турбины.
  3. Определение границ регулировочного диапазона работы паровой турбины.

При работе с номограммами q т брутто первый шаг осуществляется быстро. Такую работу называют оцифровкой (digitizing). Оцифровка 9 номограмм для текущего примера заняла у меня около 40 минут.


Второй и третий шаг требуют применения математических пакетов. Я люблю и много лет использую MATLAB. Мой пример построения линеаризованной расходной характеристики выполнен именно в нем. Пример можно скачать по ссылке , запустить и самостоятельно разобраться в методе построения линеаризованной расходной характеристики.


Расходная характеристика для рассматриваемой турбины строилась для следующих фиксированных значений параметров режима:

  • одноступенчатый режим работы,
  • давление пара среднего давления = 13 кгс/см2,
  • давление пара низкого давления = 1 кгс/см2.

1) Номограммы удельного расхода q т брутто на выработку электроэнергии (отмеченные красные точки оцифрованы — перенесены в таблицу):

  • PT80_qt_Qm_eq_0_digit.png,
  • PT80_qt_Qm_eq_100_digit.png,
  • PT80_qt_Qm_eq_120_digit.png,
  • PT80_qt_Qm_eq_140_digit.png,
  • PT80_qt_Qm_eq_150_digit.png,
  • PT80_qt_Qm_eq_20_digit.png,
  • PT80_qt_Qm_eq_40_digit.png,
  • PT80_qt_Qm_eq_60_digit.png,
  • PT80_qt_Qm_eq_80_digit.png.

2) Результат оцифровки (каждому файлу csv соответствует файл png):

  • PT-80_Qm_eq_0.csv,
  • PT-80_Qm_eq_100.csv,
  • PT-80_Qm_eq_120.csv,
  • PT-80_Qm_eq_140.csv,
  • PT-80_Qm_eq_150.csv,
  • PT-80_Qm_eq_20.csv,
  • PT-80_Qm_eq_40.csv,
  • PT-80_Qm_eq_60.csv,
  • PT-80_Qm_eq_80.csv.

3) Скрипт MATLAB с расчетами и построением графиков:

  • PT_80_linear_characteristic_curve.m

4) Результат оцифровки номограмм и результат построения линеаризованной расходной характеристики в табличном виде:

  • PT_80_linear_characteristic_curve.xlsx.

Шаг 1. Перевод номограмм или результатов измерений в табличный вид

1. Обработка исходных данных

Исходными данными для нашего примера являются номограммы q т брутто.


Для перевода в цифровой вид множества номограмм нужен специальный инструмент. Я многократно использовала web-приложение для этих целей. Приложение просто, удобно, однако не имеет достаточной гибкости для автоматизации процесса. Часть работы приходится делать вручную.


На данном шаге важно оцифровать крайние точки номограмм, которые задают границы регулировочного диапазона работы паровой турбины .


Работа состояла в том, чтобы в каждом файле png при помощи приложения отметить точки расходной характеристики, скачать полученный csv и собрать все данные в одной таблице. Результат оцифровки можно найти в файле PT-80-linear-characteristic-curve.xlsx, лист «PT-80», таблица «Исходные данные».

2. Приведение единиц измерения к единицам мощности

$$display$$\begin{equation} Q_0 = \frac {q_T \cdot N} {1000} + Q_П + Q_Т \qquad (1) \end{equation}$$display$$


и приводим все исходные величины к МВт. Расчеты реализованы средствами MS Excel.

Полученная таблица «Исходные данные (ед. мощности)» является результатом первого шага алгоритма.

Шаг 2. Линеаризация расходной характеристики паровой турбины

1. Проверка работы MATLAB

На данном шаге требуется установить и открыть MATLAB версии не ниже 7.3 (это старая версия, текущая 8.0). В MATLAB открыть файл PT_80_linear_characteristic_curve.m, запустить его и убедиться в работоспособности. Все работает корректно, если по итогам запуска скрипта в командной строке вы увидели следующее сообщение:


Значения считаны из файла PT_80_linear_characteristic_curve.xlsx за 1 сек Коэффициенты: a(N) = 2.317, a(Qп) = 0.621, a(Qт) = 0.255, a0 = 33.874 Средняя ошибка = 0.006, (0.57%) Число граничных точек регулировочного диапазона = 37

Если у вас возникли ошибки, то разберитесь самостоятельно, как их исправить.

2. Вычисления

Все вычисления реализованы в файле PT_80_linear_characteristic_curve.m. Рассмотрим его по частям.


1) Укажем название исходного файла, лист, диапазон ячеек, содержащий полученную на предыдущем шаге таблицу «Исходные данные (ед. мощности)».


XLSFileName = "PT_80_linear_characteristic_curve.xlsx"; XLSSheetName = "PT-80"; XLSRange = "F3:I334";

2) Считаем исходные данные в MATLAB.


sourceData = xlsread(XLSFileName, XLSSheetName, XLSRange); N = sourceData(:,1); Qm = sourceData(:,2); Ql = sourceData(:,3); Q0 = sourceData(:,4); fprintf("Значения считаны из файла %s за %1.0f сек\n", XLSFileName, toc);

Используем переменную Qm для расхода пара среднего давления Q п, индекс m от middle — средний; аналогично используем переменную Ql для расхода пара низкого давления Q n , индекс l от low — низкий.


3) Определим коэффициенты α i .


Вспомним общую формулу расходной характеристики

$$display$$\begin{equation} Q_0 = f(N, Q_П, Q_Т) \qquad (2) \end{equation}$$display$$

и укажем независимые (x_digit) и зависимые (y_digit) переменные.


x_digit = ; % электроэнергия N, промышленный пар Qп, теплофикационный пар Qт, единичный вектор y_digit = Q0; % расход острого пара Q0

Если вам непонятно, зачем в матрице x_digit единичный вектор (последний столбец), то читайте материалы по линейной регрессии. На тему регрессионного анализа рекомендую книгу Draper N., Smith H. Applied regression analysis . New York: Wiley, In press, 1981. 693 p. (есть на русском языке).


Уравнение линеаризованной расходной характеристики паровой турбины


$$display$$\begin{equation} Q_0 = \alpha_N \cdot N + \alpha_П \cdot Q_П + \alpha_Т \cdot Q_Т + \alpha_0 \qquad (3) \end{equation}$$display$$

является моделью множественной линейной регрессии. Коэффициенты α i определим при помощи «большого блага цивилизации» — метода наименьших квадратов. Отдельно отмечу, что метод наименьших квадратов разработан Гауссом в 1795 году.


В MATLAB это делается одной строчкой.


A = regress(y_digit, x_digit); fprintf("Коэффициенты: a(N) = %4.3f, a(Qп) = %4.3f, a(Qт) = %4.3f, a0 = %4.3f\n",... A);

Переменная A содержит искомые коэффициенты (см. сообщение в командной строке MATLAB).


Таким образом, полученная линеаризованная расходная характеристика паровой турбины ПТ-80 имеет вид


$$display$$\begin{equation} Q_0 = 2.317 \cdot N + 0.621 \cdot Q_П + 0.255 \cdot Q_Т + 33.874 \qquad (4) \end{equation}$$display$$


4) Оценим ошибку линеаризации полученной расходной характеристики.


y_model = x_digit * A; err = abs(y_model - y_digit) ./ y_digit; fprintf("Средняя ошибка = %1.3f, (%4.2f%%)\n\n", mean(err), mean(err)*100);

Ошибка линеаризации равна 0,57% (см. сообщение в командной строке MATLAB).


Для оценки удобства использования линеаризованной расходной характеристики паровой турбины решим задачу вычисления расхода пара высокого давления Q 0 при известных значениях нагрузки N, Q п, Q т.


Пусть N = 82.3 МВт, Q п = 55.5 МВт, Q т = 62.4 МВт, тогда


$$display$$\begin{equation} Q_0 = 2.317 \cdot 82,3 + 0.621 \cdot 55,5 + 0.255 \cdot 62,4 + 33.874 = 274,9 \qquad (5) \end{equation}$$display$$


Напомню, что средняя ошибка вычислений составляет 0,57%.


Вернемся к вопросу, чем линеаризованная расходная характеристика паровой турбины принципиально удобнее номограмм удельного расхода q т брутто на выработку электроэнергии? Чтобы понять принципиальную разницу на практике, решите две задачи.

  1. Вычислите величину Q 0 с указанной точностью с использованием номограмм и ваших глаз.
  2. Автоматизируйте процесс расчета Q 0 с использованием номограмм.

Очевидно, что в первой задаче определение значений q т брутто на глаз чревато грубыми ошибками.


Вторая задача громоздка для автоматизации. Поскольку значения q т брутто нелинейны , то для такой автоматизации число оцифрованных точек в десятки раз больше, чем в текущем примере. Одной оцифровки недостаточно, также необходимо реализовать алгоритм интерполяции (нахождения значений между точками) нелинейных значений брутто.

Шаг 3. Определение границ регулировочного диапазона работы паровой турбины

1. Вычисления

Для вычисления регулировочного диапазона воспользуемся другим «благом цивилизации» — методом выпуклой оболочки, convex hull.


В MATLAB это делается следующим образом.


indexCH = convhull(N, Qm, Ql, "simplify", true); index = unique(indexCH); regRange = ; regRangeQ0 = * A; fprintf("Число граничных точек регулировочного диапазона = %d\n\n", size(index,1));

Метод convhull() определяет граничные точки регулировочного диапазона , заданного значениями переменных N, Qm, Ql. Переменная indexCH содержит вершины треугольников, построенных при помощи триангуляции Делоне. Переменная regRange содержит граничные точки регулировочного диапазона; переменная regRangeQ0 — значения расхода пара высокого давления для граничных точек регулировочного диапазона.


Результат вычислений можно найти в файле PT_80_linear_characteristic_curve.xlsx, лист «PT-80-result», таблица «Границы регулировочного диапазона».


Линеаризованная расходная характеристика построена. Она представляет собой формулу и 37 точек, задающих границы (оболочку) регулировочного диапазона в соответствующей таблице.

2. Проверка

При автоматизации процессов расчета Q 0 необходимо проверять, находится ли некоторая точка со значениями N, Q п, Q т внутри регулировочного диапазона или за его пределами (режим технически не реализуем). В MATLAB это можно делать следующим образом.


Задаем значения N, Q п, Q т, которые мы хотим проверить.


n = 75; qm = 120; ql = 50;

Проверяем.


in1 = inpolygon(n, qm, regRange(:,1),regRange(:,2)); in2 = inpolygon(qm, ql, regRange(:,2),regRange(:,3)); in = in1 && in2; if in fprintf("Точка N = %3.2f МВт, Qп = %3.2f МВт, Qт = %3.2f МВт находится внутри регулировочного диапазона\n", n, qm, ql); else fprintf("Точка N = %3.2f МВт, Qп = %3.2f МВт, Qт = %3.2f МВт находится снаружи регулировочного диапазона (технически недостижима)\n", n, qm, ql); end

Проверка осуществляется в два шага:

  • переменная in1 показывает, попали ли значения N, Q п внутрь проекции оболочки на оси N, Q п;
  • аналогично переменная in2 показывает, попали ли значения Q п, Q т внутрь проекции оболочки на оси Q п, Q т.

Если обе переменные равны 1 (true), то искомая точка находится внутри оболочки, задающей регулировочный диапазон работы паровой турбины.

Иллюстрация полученной линеаризованной расходной характеристики паровой турбины

Наиболее «щедрые блага цивилизации» нам достались в части иллюстрации результатов расчетов.


Предварительно нужно сказать, что пространство, в котором мы строим графики, т. е. пространство с осями x – N, y – Q т, z – Q 0 , w – Q п, называем режимным пространством (см. Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России

). Каждая точка этого пространства определяет некоторый режим работы паровой турбины. Режим может быть

  • технически реализуемым, если точка находится внутри оболочки, задающей регулировочный диапазон,
  • технически не реализуемым, если точка находится за пределами этой оболочки.

Если говорить о конденсационном режиме работы паровой турбины (Q п = 0, Q т = 0), то линеаризованная расходная характеристика представляет собой отрезок прямой . Если говорить о турбине Т-типа, то линеаризованная расходная характеристика представляет собой плоский многоугольник в трехмерном режимном пространстве с осями x – N, y – Q т, z – Q 0 , который легко визуализировать. Для турбины ПТ-типа визуализация наиболее сложная, поскольку линеаризованная расходная характеристика такой турбины представляет плоский многоугольник в четырехмерном пространстве (пояснения и примеры см. в Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России, раздел Линеаризация расходной характеристики турбины ).

1. Иллюстрация полученной линеаризованной расходной характеристики паровой турбины

Построим значения таблицы «Исходные данные (ед. мощности)» в режимном пространстве.



Рис. 3. Исходные точки расходной характеристики в режимном пространстве с осями x – N, y – Q т, z – Q 0


Поскольку построить зависимость в четырехмерном пространстве мы не можем, до такого блага цивилизации еще не дошли, оперируем значениями Q п следующим образом: исключаем их (рис. 3), зафиксируем (рис. 4) (см. код построения графиков в MATLAB).


Зафиксируем значение Q п = 40 МВт и построим исходные точки и линеаризованную расходную характеристику.




Рис. 4. Исходные точки расходной характеристики (синие точки), линеаризованная расходная характеристика (зеленый плоский многоугольник)


Вернемся к полученной нами формуле линеаризованной расходной характеристики (4). Если зафиксировать Q п = 40 МВт МВт, то формула будет иметь вид


$$display$$\begin{equation} Q_0 = 2.317 \cdot N + 0.255 \cdot Q_Т + 58.714 \qquad (6) \end{equation}$$display$$


Данная модель задает плоский многоугольник в трехмерном пространстве с осями x – N, y – Q т, z – Q 0 по аналогии с турбиной Т-типа (его мы и видим на рис. 4).


Много лет назад, когда разрабатывали номограммы q т брутто, на этапе анализа исходных данных совершили принципиальную ошибку. Вместо применения метода наименьших квадратов и построения линеаризованной расходной характеристики паровой турбины по неведомой причине сделали примитивный расчет:


$$display$$\begin{equation} Q_0(N) = Q_э = Q_0 - Q_Т - Q_П \qquad (7) \end{equation}$$display$$


Вычли из расхода пара высокого давления Q 0 расходы паров Q т, Q п и отнесли полученную разницу Q 0 (N) = Q э на выработку электроэнергии. Полученную величину Q 0 (N) = Q э поделили на N и перевели в ккал/кВт·ч, получив удельный расход q т брутто. Данный расчет не соответствует законам термодинамики.


Дорогие читатели, может, именно вы знаете неведомую причину? Поделитесь ею!

2. Иллюстрация регулировочного диапазона паровой турбины

Посмотрим оболочку регулировочного диапазона в режимном пространстве. Исходные точки для его построения представлены на рис. 5. Это те же самые точки, которые мы видим на рис. 3, однако теперь исключен параметр Q 0 .




Рис. 5. Исходные точки расходной характеристики в режимном пространстве с осями x – N, y – Q п, z – Q т


Множество точек на рис. 5 является выпуклым. Применив функцию convexhull(), мы определили точки, которые задают внешнюю оболочку этого множества.


Триангуляция Делоне (набор связанных треугольников) позволяет нам построить оболочку регулировочного диапазона. Вершины треугольников являются граничными значениями регулировочного диапазона рассматриваемой нами паровой турбины ПТ-80.




Рис. 6. Оболочка регулировочного диапазона, представленная множеством треугольников


Когда мы делали проверку некоторой точки на предмет попадания внутрь регулировочного диапазона, то мы проверяли, лежит ли эта точка внутри или снаружи полученной оболочки.


Все представленные выше графики построены средствами MATLAB (см. PT_80_linear_characteristic_curve.m).

Перспективные задачи, связанные с анализом работы паровой турбины при помощи линеаризованной расходной характеристики

Если вы делаете диплом или диссертацию, то могу предложить вам несколько задач, научную новизну которых вы легко сможете доказать всему миру. Кроме того, вы сделаете отличную и полезную работу.

Задача 1

Покажите, как изменится плоский многоугольник при изменении давления пара низкого давления Q т.

Задача 2

Покажите, как изменится плоский многоугольник при изменении давления в конденсаторе.

Задача 3

Проверьте, можно ли представить коэффициенты линеаризованной расходной характеристики в виде функций дополнительных параметров режима, а именно:


$$display$$\begin{equation} \alpha_N = f(p_{0},...); \\ \alpha_П = f(p_{П},...); \\ \alpha_Т = f(p_{Т},...); \\ \alpha_0 = f(p_{2},...). \end{equation}$$display$$

Здесь p 0 — давление пара высокого давления, p п — давление пара среднего давления, p т — давление пара низкого давления, p 2 — давление отработанного пара в конденсаторе, все единицы измерения кгс/см2.


Обоснуйте результат.

Ссылки

Чучуева И.А., Инкина Н.Е. Оптимизация работы ТЭЦ в условиях оптового рынка электроэнергии и мощности России // Наука и образование: научное издание МГТУ им. Н.Э. Баумана. 2015. № 8. С. 195-238.

  • Раздел 1. Содержательная постановка задачи оптимизации работы ТЭЦ в России
  • Раздел 2. Линеаризация расходной характеристики турбины
Добавить метки

Введение

Для крупных заводов всех отраслей промышленности, имеющих большое теплопотребление, оптимальной является система энергоснабжения от районной или промышленной ТЭЦ.

Процесс производства электроэнергии на ТЭЦ характеризуется повышенной тепловой экономичностью и более высокими энергетическими показателями по сравнению с конденсационными электростанциями. Это объясняется тем, что отработавшее тепло турбины, отведенное в холодный источник (приемника тепла у внешнего потребителя), используется в нем.

В работе произведен расчет принципиальной тепловой схемы электростанции на базе производственной теплофикационной турбины ПТ-80/100-130/13, работающей на расчетном режиме при наружной температуре воздуха.

Задачей расчета тепловой схемы является определение параметров, расходов и направлений потоков рабочего тела в агрегатах и узлах, а также общего расхода пара, электрической мощности и показателей тепловой экономичности станции.

Описание принципиальной тепловой схемы турбоустановки ПТ-80/100-130/13

Энергоблок электрической мощностью 80 МВт состоит из барабанного котла высокого давления Е-320/140, турбины ПТ-80/100-130/13, генератора и вспомогательного оборудования.

Энергоблок имеет семь отборов. В турбоустановке можно осуществлять двухступенчатый подогрев сетевой воды. Имеется основной и пиковый бойлера, а также ПВК, который включается если бойлера не могут обеспечить требуемого нагрева сетевой воды.

Свежий пар из котла с давлением 12,8 МПа и температурой 555 0 С поступает в ЦВД турбины и, отработав, направляется в ЧСД турбины, а затем в ЧНД. Отработав пар поступает из ЧНД в конденсатор.

В энергоблоке для регенерации предусмотрены три подогревателя высокого давления (ПВД) и четыре низкого (ПНД). Нумерация подогревателей идет с хвоста турбоагрегата. Конденсат греющего пара ПВД-7 каскадно сливается в ПВД-6, в ПВД-5 и затем в деаэратор (6 ата). Слив конденсата из ПНД4, ПНД3 и ПНД2 также осуществляется каскадно в ПНД1. Затем из ПНД1 конденсат греющего пара, направляется в СМ1(см. ПрТС2).

Основной конденсат и питательная вода подогреваются последовательно в ПЭ, СХ и ПС, в четырех подогревателях низкого давления (ПНД), в деаэраторе 0,6 МПа и в трех подогревателях высокого давления (ПВД). Отпуск пара на эти подогреватели осуществляется из трех регулируемых и четырех нерегулируемых отборов пара турбины.

На блоке для подогрева воды в теплосети имеется бойлерная установка, состоящая из нижнего(ПСГ-1) и верхнего(ПСГ-2) сетевых подогревателей, питающихся соответственно паром из 6-го и 7-го отбора, и ПВК. Конденсат из верхнего и нижнего сетевых подогревателей подается сливными насосами в смесители СМ1 между ПНД1 и ПНД2 и СМ2 между подогревателями ПНД2 и ПНД3.

Температура подогрева питательной воды лежит в пределах (235-247) 0 С и зависит о начального давления свежего пара, величины недогрева в ПВД7.

Первый отбор пара (из ЦВД) идет на нагрев питательной воды в ПВД-7, второй отбор (из ЦВД) - в ПВД-6, третий (из ЦВД) - в ПВД-5, Д6ата, на производство; четвертый (из ЧСД) - в ПНД-4, пятый (из ЧСД) - в ПНД-3, шестой (из ЧСД) - в ПНД-2, деаэратор (1,2 ата), в ПСГ2, в ПСВ; седьмой (из ЧНД) - в ПНД-1 и в ПСГ1.

Для восполнения потерь в схеме предусмотрен забор сырой воды. Сырая вода подогревается в подогревателе сырой воды (ПСВ) до температуры 35 о С, затем, пройдя химическую очистку, поступает в деаэратор 1,2 ата. Для обеспечения подогрева и деаэрации добавочной воды используется теплота пара из шестого отбора.

Пар из штоков уплотнений в количестве D шт = 0,003D 0 идет в деаэратор (6 ата). Пар из крайних камер уплотнений направляется в СХ, из средних камер уплотнения - в ПС.

Продувка котла - двухступенчатая. Пар с расширителя 1-ой ступени идет в деаэратор(6 ата), с расширителя 2-ой ступени в деаэратор(1,2 ата). Вода с расширителя 2-ой ступени подается в магистраль сетевой воды, для частичного восполнения потерь сети.

Рисунок 1. Принципиальная тепловая схема ТЭЦ на базе ТУ ПТ-80/100-130/13

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Аннотация

В данной курсовой работе произведен расчет принципиальной тепловой схемы электростанции на базе теплофикационной паровой турбины

ПТ-80/100-130/13 при температуре окружающей среды, рассчитана система регенеративного подогрева и сетевых подогревателей, а также показатели тепловой экономичности турбоустановки и энергоблока.

В приложении приведены принципиальная тепловая схема на базе турбоустановки ПТ-80/100-130/13, график температур сетевой воды и теплофикационной нагрузки, h-s диаграмма расширения пара в турбине, диаграмма режимов турбоустановки ПТ-80/100-130/13, общий вид подогревателя высокого давления ПВ-350-230-50, спецификация общего вида ПВ-350-230-50, продольный разрез турбоустановки ПТ-80/100-130/13, спецификация общего вида вспомогательного оборудования, входящего в схему ТЭС.

Работа составлена на 45-х листах и включает в себя, 6 таблиц и 17 иллюстраций. В работе было использовано 5 литературных источников.

  • Введение
  • Обзор научно-технической литературы(Технологии генерации электрической и тепловой энергии)
  • 1. Описание принципиальной тепловой схемы турбоустановки ПТ-80/100-130/13
  • 2. Расчет принципиальной тепловой схемы турбоустановки ПТ-80/100-130/13 на режиме повышенной нагрузки
    • 2.1 Исходные данные для расчета
    • 2.2
    • 2.3 Расчет параметров процесса расширения пара в отсеках турбины в h - S диаграмме
    • 2.4
    • 2.5
    • 2.6
      • 2.6.1 Сетевая подогревательная установка (бойлерная)
      • 2.6.2 Регенеративные подогреватели высокого давления и питательная установка (насос)
      • 2.6.3 Деаэратор питательной воды
      • 2.6.4 Подогреватель сырой воды
      • 2.6.5
      • 2.6.6 Деаэратор добавочной воды
      • 2.6.7
      • 2.6.8 Конденсатор
    • 2.7
    • 2.8 Энергетический баланс турбоагрегата ПТ- 80/100-130/13
    • 2.9
    • 2.10
  • Заключение
  • Список литературы
  • Введение
  • Для крупных заводов всех отраслей промышленности, имеющих большое теплопотребление, оптимальной является система энергоснабжения от районной или промышленной ТЭЦ.
  • Процесс производства электроэнергии на ТЭЦ характеризуется повышенной тепловой экономичностью и более высокими энергетическими показателями по сравнению с конденсационными электростанциями. Это объясняется тем, что отработавшее тепло турбины, отведенное в холодный источник (приемника тепла у внешнего потребителя), используется в нем.
  • В работе произведен расчет принципиальной тепловой схемы электростанции на базе производственной теплофикационной турбины ПТ-80/100-130/13, работающей на расчетном режиме при наружной температуре воздуха.
  • Задачей расчета тепловой схемы является определение параметров, расходов и направлений потоков рабочего тела в агрегатах и узлах, а также общего расхода пара, электрической мощности и показателей тепловой экономичности станции.
  • 1. Описание принципиальной тепловой схемы турбоустановки ПТ- 80/100-130/13

Энергоблок электрической мощностью 80 МВт состоит из барабанного котла высокого давления Е-320/140, турбины ПТ-80/100-130/13, генератора и вспомогательного оборудования.

Энергоблок имеет семь отборов. В турбоустановке можно осуществлять двухступенчатый подогрев сетевой воды. Имеется основной и пиковый бойлера, а также ПВК, который включается если бойлера не могут обеспечить требуемого нагрева сетевой воды.

Свежий пар из котла с давлением 12,8 МПа и температурой 555 0 Споступает в ЦВД турбины и, отработав, направляется в ЧСД турбины, а затем в ЧНД. Отработав пар поступает из ЧНД в конденсатор.

В энергоблоке для регенерации предусмотрены три подогревателя высокого давления (ПВД) и четыре низкого (ПНД). Нумерация подогревателей идет с хвоста турбоагрегата. Конденсат греющего пара ПВД-7 каскадно сливается в ПВД-6, в ПВД-5 и затем в деаэратор (6 ата). Слив конденсата из ПНД4, ПНД3 и ПНД2 также осуществляется каскадно в ПНД1. Затем из ПНД1 конденсат греющего пара, направляется в СМ1(см. ПрТС2).

Основной конденсат и питательная вода подогреваются последовательно в ПЭ, СХ и ПС, в четырех подогревателях низкого давления (ПНД), в деаэраторе 0,6 МПа и в трех подогревателях высокого давления (ПВД). Отпуск пара на эти подогреватели осуществляется из трех регулируемых и четырех нерегулируемых отборов пара турбины.

На блоке для подогрева воды в теплосети имеется бойлерная установка, состоящая из нижнего(ПСГ-1) и верхнего(ПСГ-2) сетевых подогревателей, питающихся соответственно паром из 6-го и 7-го отбора, и ПВК. Конденсат из верхнего и нижнего сетевых подогревателей подается сливными насосами в смесители СМ1 между ПНД1 и ПНД2 и СМ2 между подогревателями ПНД2 и ПНД3.

Температура подогрева питательной воды лежит в пределах (235-247) 0 С и зависит о начального давления свежего пара, величины недогрева в ПВД7.

Первый отбор пара (из ЦВД) идет на нагрев питательной воды в ПВД-7, второй отбор (из ЦВД) - в ПВД-6, третий (из ЦВД) - в ПВД-5, Д6ата, на производство; четвертый (из ЧСД) - в ПНД-4, пятый (из ЧСД) - в ПНД-3, шестой (из ЧСД) - в ПНД-2, деаэратор (1,2 ата), в ПСГ2, в ПСВ; седьмой (из ЧНД) - в ПНД-1 и в ПСГ1.

Для восполнения потерь в схеме предусмотрен забор сырой воды. Сырая вода подогревается в подогревателе сырой воды (ПСВ) до температуры 35 о С, затем, пройдя химическую очистку, поступает в деаэратор 1,2 ата. Для обеспечения подогрева и деаэрации добавочной воды используется теплота пара из шестого отбора.

Пар из штоков уплотнений в количестве D шт = 0,003D 0 идет в деаэратор (6 ата). Пар из крайних камер уплотнений направляется в СХ, из средних камер уплотнения - в ПС.

Продувка котла - двухступенчатая. Пар с расширителя 1-ой ступени идет в деаэратор(6 ата), с расширителя 2-ой ступени в деаэратор(1,2 ата). Вода с расширителя 2-ой ступени подается в магистраль сетевой воды, для частичного восполнения потерь сети.

Рисунок 1. Принципиальная тепловая схема ТЭЦ на базе ТУ ПТ-80/100-130/13

2. Расчет принципиальной тепловой схемы турбоустановки ПТ- 80/100-130/13 на режиме повышенной нагрузки

Расчет принципиальной тепловой схемы турбоустановки производится исходя из заданного расхода пара на турбину. В результате расчета определяют:

? электрическую мощность турбоагрегата - W э;

? энергетические показатели турбоустановки и ТЭЦ в целом:

б. коэффициент полезного действия ТЭЦ по производству электроэнергии;

в. коэффициент полезного действия ТЭЦ по производству и отпуску теплоты на отопление;

г. удельный расход условного топлива на производство электроэнергии;

д. удельный расход условного топлива на производство и отпуск тепловой энергии.

2.1 Исходные данные для расчета

Давление свежего пара -

Температура свежего пара -

Давление в конденсаторе - P к =0,00226 МПа

Параметры пара производственного отбора:

расход пара -

подающей - ,

обратной - .

Расход свежего пара на турбину -

Значения КПД элементов тепловой схемы приведены в таблице 2.1.

Таблица 2.1. КПД элементов тепловой схемы

Элемент тепловой схемы

Коэффициент полезного действия

Обозначение

Значение

Расширитель непрерывной продувки

Нижний сетевой подогреватель

Верхний сетевой подогреватель

Система регенеративного подогрева:

Питательный насос

Деаэратор питательной воды

Охладитель продувки

Подогреватель очищенной воды

Деаэратор конденсационной воды

Смесители

Подогреватель уплотнений

Эжектор уплотнений

Трубопроводы

Генератор

2.2 Расчет давлений в отборах турбины

Тепловая нагрузка ТЭЦ определяется потребностями производственного потребителя пара и отпуском теплоты внешнему потребителю на отопление, вентиляцию и горячее водоснабжение.

Для расчета характеристик тепловой эффективности ТЭЦ промышленно-теплофикационной турбиной на режиме повышенной нагрузки (ниже -5єС) необходимо определить давление пара в отборах турбины. Это давление устанавливается исходя из требований промышленного потребителя и температурного графика сетевой воды.

В данной курсовой работе принят постоянный отбор пара на технологические (производственные) нужды внешнего потребителя, который равен с давлением, что соответствует номинальному режиму работы турбоустановки, следовательно, давление в нерегулируемых отборах турбины №1 и №2 равно: ,

Параметры пара в отборах турбины при номинальном режиме известны из ее основных технических характеристик.

Необходимо определить действительное (т.е. для заданного режима) значение давления в теплофикационном отборе. Для этого выполняется следующая последовательность действий:

1. По заданной величине и выбранному (заданному) температурному графику теплосети определяем температуру сетевой воды за сетевыми подогревателями при данной температуре наружного воздуха t НАР

t ВС = t О.С + б ТЭЦ (t П.С - t О.С)

t ВС = 55,6+ 0,6 (106,5 - 55,6)=86,14 0 С

2. По принятой величине недогрева воды и и значению t ВС находим температуру насыщения в сетевом подогревателе:

= t ВС + и

86,14 + 4,3 = 90,44 0 С

Затем по таблицам насыщения для воды и водяного пара определяем давление пара в сетевом подогревателе Р ВС =0,07136 МПа.

3. Тепловая нагрузка на нижний сетевой подогреватель достигает 60% от всей нагрузки на бойлерную

t НС = t О.С + 0,6 (t В.С - t О.С)

t НС = 55,6+ 0,6 (86,14 - 55,6)=73,924 0 С

По таблицам насыщения для воды и водяного пара определяем давление пара в сетевом подогревателе Р Н С =0,04411 МПа.

4. Определяем давление пара в теплофикационных (регулируемых) отборах №6, №7 турбины с учётом принятых потерь давления по трубопроводам:

где потери в трубопроводах и системах регулирования турбины принимаем:; ;

5. По значению давления пара (Р 6 ) в теплофикационном отборе №6 турбины уточняем давление пара в нерегулируемых отборах турбины между промышленным отбором №3 и регулируемым теплофикационным отбором №6 (по уравнению Флюгеля - Стодолы):

где D 0 , D , Р 60 , Р 6 - расход и давление пара в отборе турбины на номинальном и рассчитываемом режиме, соответственно.

2.3 Расчет параметров процесса расширения пара в отсеках турбины в h - S диаграмме

По описанной ниже методике и найденным в предыдущем пункте значениям давлений в отборах построим диаграмму процесса расширения пара в проточной части турбины при t нар =- 15 є С.

Точка пересечения на h , s - диаграмме изобары с изотермой определяет энтальпию свежего пара (точка 0 ).

Потери давления свежего пара в стопорном и регулирующим клапанах и тракте паров пуска при полностью открытых клапанах составляет примерно 3%. Поэтому давление пара перед первой ступенью турбины равно:

На h , s - диаграмме отмечается точка пересечения изобары с уровнем энтальпии свежего пара (точка 0 /).

Для расчета параметров пара на выходе каждого отсека турбины мы располагаем величинами внутренних относительных КПД отсеков.

Таблица 2.2. Внутренние относительные КПД турбины по отсекам

Из полученной точки (точка 0 /) вертикально вниз (по изоэнтропе) проводится линия до пересечения с изобарой давления в отборе №3 . Энтальпия точки пересечения равна.

Энтальпия пара в камере третьего регенеративного отбора в реальном процессе расширения равна:

Аналогично на h,s - диаграмме находятся точки, соответствующие состоянию пара в камере шестого и седьмого отборов.

После построения процесса расширения пара в h , S - диаграмме на него наносятся изобары нерегулируемых отборов на регенеративные подогреватели Р 1 , Р 2 , Р 4 , Р 5 и устанавливаются энтальпии пара в этих отборах.

Построенные на h,s - диаграмме точки соединяются линией, которая отражает процесс расширения пара в проточной части турбины. График процесса расширения пара приведен на рис.А.1. (Приложение А).

По построенной h,s - диаграмме определяем температуру пара в соответствующем отборе турбины по значениям его давления и энтальпии. Все параметры приведены в таблице 2.3.

2.4 Расчет термодинамических параметров в подогревателях

Давление в регенеративных подогревателях меньше давления в камерах отборов на величину потерь давления из-за гидравлического сопротивления трубопроводов отбора, предохранительной и запорной арматуры.

1. Рассчитываем давление насыщенного водяного пара в регенеративных подогревателях. Потери давления по трубопроводу от отбора турбины до соответствующего подогревателя принимаются равными:

Давление насыщенного водяного пара в деаэраторах питательной и конденсационной воды известно из их технических характеристик и равно соответственно,

2. По таблице свойств воды и пара в состоянии насыщения , по найденным давлениям насыщения определяем температуры и энтальпии конденсата греющего пара.

3. Принимаем недогрев воды:

В регенеративных подогревателях высокого давления - С

В регенеративных подогревателях низкого давления - С ,

В деаэраторах - С ,

следовательно, температура воды на выходе из этих подогревателей равна:

, є С

4. Давление воды за соответствующими подогревателями определяется гидравлическим сопротивлением тракта и режимом работы насосов. Значения этих давлений принимаются и приведены в таблице 2.3.

5. По таблицам для воды и перегретого пара , определяем энтальпию воды после подогревателей (по значениям и):

6. Подогрев воды в подогревателе определяется как разность энтальпий воды на входе и выходе из подогревателя:

, кДж/кг ;

кДж/кг ;

кДж/кг ;

кДж/кг ;

кДж/кг

кДж/кг ;

кДж/кг ;

кДж/кг ;

кДж/кг ,

где - энтальпия конденсата на выходе из подогревателя уплотнений. В данной работе эта величина принимается равной.

7. Тепло, отдаваемое греющим паром воде в подогревателе:

2.5 Параметры пара и воды в турбоустановке

Для удобства дальнейшего расчета параметры пара и воды в турбоустановке, рассчитанные выше, сведены в таблице 2.3.

Данные о параметрах пара и воды в охладителях дренажа приведены в таблице 2.4.

Таблица 2.3. Параметры пара и воды в турбоустановке

p, Мпа

t, 0 С

h, кДж/кг

p", Мпа

t" H , 0 С

h B H , кДж/кг

0 С

p B , МПа

t П , 0 С

h B П , кДж/кг

кДж/кг

Таблица 2.4. Параметры пара и воды в охладителях дренажа

2.6 Определение расходов пара и конденсата в элементах тепловой схемы

Расчет выполняется в следующем порядке:

1. Расход пара на турбину при расчетном режиме.

2.Утечки пара через уплотнения

Принимаем, тогда

4. Расход питательной воды на котел (с учетом продувки)

где - количество котловой воды, идущей в непрерывную продувку

D пр =(б пр /100)· D пг =(1,5/100)·131,15=1,968 кг/с

5. Выход пара из расширителя продувки

где - доля пара, выделяющегося из продувочной воды в расширителе непрерывной продувки

6.Выход продувочной воды из расширителя

7.Расход добавочной воды из цеха химической водоочистки (ХВО)

где - коэффициент возврата конденсата от

производственных потребителей, принимаем;

Расчет расходов пара в регенеративные и сетевые подогреватели в деаэратор и конденсатор, а также расходов конденсата через подогреватели и смесители основывается на уравнениях материальных и тепловых балансов.

Балансовые уравнения составляются последовательно для каждого элемента тепловой схемы.

Первым этапом расчета тепловой схемы турбоустановки является составление тепловых балансов сетевых подогревателей и определение расходов пара на каждый из них на основании заданной тепловой нагрузки турбины и температурного графика. После этого составляются тепловые балансы регенеративных подогревателей высокого давления, деаэраторов и подогревателей низкого давления.

2.6.1 Сетевая подогревательная установка (бойлерная )

Таблица 2.5. Параметры пара и воды в сетевой подогревательной установке

Показатель

Нижний подогреватель

Верхний подогреватель

Греющий пар

Давление в отборе Р, МПа

Давление в подогревателе Р?, МПа

Температура пара t,єС

Отдаваемое тепло qнс, qвс, кДж/кг

Конденсат греющего пара

Температура насыщения tн,єС

Энтальпия при насыщении h?, кДж/кг

Сетевая вода

Недогрев в подогревателе Инс, Ивс,єС

Температура на входе tос, tнс, єС

Энтальпия на входе, кДж/кг

Температура на выходе tнс,tвс, єС

Энтальпия на выходе, кДж/кг

Подогрев в подогревателе фнс, фвс, кДж/кг

Определение параметров установки выполняется в следующей последовательности.

1.Расход сетевой воды для рассчитываемого режима

2.Тепловой баланс нижнего сетевого подогревателя

Расход греющего пара на нижний сетевой подогреватель

из табл.2.1.

3.Тепловой баланс верхнего сетевого подогревателя

Расход греющего пара на верхний сетевой подогреватель

Регенеративные подогреватели высокого давления и питательная установка (насос)

ПВД 7

Уравнение теплового баланса ПВД7

Расход греющего пара на ПВД7

ПВД 6

Уравнение теплового баланса ПВД6

Расход греющего пара на ПВД6

тепло, отводимое из дренажа ОД2

Питательный насос (ПН)

Давление после ПН

Давление в насосе в ПН

Перепад давления

Удельный объем воды в ПН v ПН - определяем из таблиц по значению

Р ПН.

КПД питательного насоса

Подогрев воды в ПН

Энтальпия после ПН

Где - из таблицы 2.3;

Уравнение теплового баланса ПВД5

Расход греющего пара на ПВД5

2.6.3 Деаэратор питательной воды

Расход пара из уплотнений штоков клапанов в ДПВ принимаем

Энтальпия пара из уплотнений штоков клапанов принимаем

(при Р = 12, 9 МПа и t = 55 6 0 С ) :

Выпар из деаэратора:

D вып =0,02 D ПВ =0.02

Доля пара (в долях от выпара из деаэратора, идущего на ПЭ, уплотнения средних и концевых камер уплотнения

Уравнение материального баланса деаэратора:

.

Уравнение теплового баланса деаэратора

После подстановки в это уравнение выражения D КД получаем:

Расход греющего пара из третьего отбора турбины на ДПВ

отсюда расход греющего пара из отбора №3 турбины на ДПВ:

D Д = 4,529.

Поток конденсата на входе в деаэратор:

D КД = 111,82 - 4,529= 107,288.

2.6.4 Подогреватель сырой воды

Энтальпия дренажа h ПСВ =140

.

2.6.5 Двухступенчатый расширитель продувки

2 - ая ступень: расширение воды, кипящей при 6 ата в количестве

до давления 1 ата.

= + (-)

направляется в атмосферный деаэратор.

2.6.6 Деаэратор добавочной воды

Размещено на http://www.allbest.ru/

Уравнение материального баланса деаэратора обратного конденсата и добавочной воды ДКВ.

D КВ = + D П.О.В + D ОК + D ОВ;

Расход химически очищенной воды:

D ОВ = (D П - D ОК) + + D УТ.

Тепловой баланс охладителя продувочной воды ОП

конденсат турбоустановка материальный

где q ОП = h h теплота, подводимая к добавочной воде в ОП.

q ОП = 670,5- 160 = 510,5 кДж / кг,

где: h энтальпия продувочной воды на выходе из ОП.

Принимаем возврат конденсата от производственных потребителей теплоты?к = 0,5 (50%), тогда:

D ОК = ?к*D П = 0,5 51,89 = 25,694 кг / с;

D ОВ = (51,89 - 25,694) + 1,145 + 0,65 = 27,493 кг / с.

Подогрев добавочной воды в ОП определим из уравнения теплового баланса ОП:

= 27,493 отсюда:

= 21,162 кДж / кг.

После охладителя продувки (ОП) добавочной воды поступает на химводоочистку, а затем в подогреватель химически очищенной воды.

Тепловой баланс подогревателя химически очищенной воды ПОВ:

где q 6 - количество теплоты, переданной в подогревателе паром из отбора №6 турбины;

подогрев воды в ПОВ. Принимаем h ОВ = 140 кДж / кг, тогда

.

Расход пара на ПОВ определим из теплового баланса подогревателя химически очищенной воды:

D ПОВ 2175,34= 27,493 230,4 откуда D ПОВ = 2,897кг / с.

Таким образом,

D КВ = D

Уравнение теплового баланса деаэратора химически очищенной воды:

D h 6 + D ПОВ h + D ОК h + D ОВ h D КВ h

D 2566,944+ 2,897 391,6+ 25,694 376,77 + 27,493 370,4= (D + 56,084) * 391,6

Отсюда D = 0,761 кг / с - расход греющего пара на ДКВ и отбора №6 турбины.

Поток конденсата на выходе из ДКВ:

D КВ = 0,761+56,084 = 56,846 кг / с.

2.6.7 Регенеративные подогреватели низкого давления

ПНД 4

Уравнение теплового баланса ПНД4

.

Расход греющего пара на ПНД4

,

где

ПНД3 и смеситель СМ2

Объединенное уравнение теплового баланса:

где поток конденсата на выходе ПНД2:

D К6 = D КД - D КВ - D ВС - D ПСВ =107,288 -56,846 - 8,937 - 2,897 = 38,609

подставим D К2 в объединенное уравнение теплового баланса:

D = 0,544кг/с - расход греющего пара на ПНД3 из отбора №5

турбины.

ПНД2 ,смеситель СМ1, ПНД1

Температура за ПС:

Составляются 1 уравнение материального и 2 уравнения теплового балансов:

1.

2.

3.

подставим в уравнение 2

Получаем:

кг/с;

D П6 = 1,253 кг/с;

D П7 = 2,758 кг/с.

2.6.8 Конденсатор

Уравнение материального баланса конденсатора

.

2.7 Проверка расчета по материальному балансу

Проверка правильности учета в расчетах всех потоков тепловой схемы осуществляется сравнением материальных балансов по пару и конденсату в конденсаторе турбоустановки.

Расход отработавшего пара в конденсатор:

,

где - расход пара из камеры отбора турбины с номером.

Расходы пара из отборов приведены в табл.2.6.

Таблица 2.6. Расходы пара по отборам турбины

№ отбора

Обозначение

Расход пара, кг/с

D 1 =D П1

D 2 =D П2

D 3 =D П3 +D Д +D П

D 4 =D П4

D 5 = D НС + D П5

D 6 =D П6 +D ВС ++D ПСВ

D 7 =D П7 +D HC

Суммарный расход пара из отборов турбины

Поток пара в конденсатор после турбины:

Погрешность по балансу пара и конденсата

Так как погрешность по балансу пара и конденсата не превышает допустимую, следовательно, все потоки тепловой схемы учтены правильно.

2.8 Энергетический баланс турбоагрегата ПТ- 80/100-130/13

Определим мощность отсеков турбины и полную ее мощность:

N i =

где N i ОТС - мощность отсека турбины, N i ОТС = D i ОТС H i ОТС,

H i ОТС = H i ОТС - H i +1 ОТС - теплоперепад в отсеке, кДж/кг,

D i ОТС - пропуск пара через отсек, кг/с.

отсек 0-1:

D 01 ОТС = D 0 = 130,5 кг/с,

H 01 ОТС = H 0 ОТС - H 1 ОТС =34 8 7 - 3233,4 = 253,6 кДж/кг,

N 01 ОТС =130,5 . 253,6 = 33,095 МВ т.

- отсек 1-2:

D 12 ОТС = D 01 - D 1 = 130,5 - 8,631 = 121,869 кг/с,

H 12 ОТС = H 1 ОТС - H 2 ОТС = 3233,4 - 3118,2 = 11 5,2 кДж/кг,

N 12 ОТС =121,869 . 11 5,2 = 14,039 МВ т.

- отсек 2-3:

D 23 ОТС = D 12 - D 2 = 121,869 - 8,929 = 112,94 кг/с,

H 23 ОТС = H 2 ОТС - H 3 ОТС = 3118,2 - 2981,4 = 136,8 кДж/кг,

N 23 ОТС =112,94 . 136,8 = 15,45 МВ т.

- отсек 3-4:

D 34 ОТС = D 23 - D 3 = 112,94 - 61,166 = 51,774 кг/с,

H 34 ОТС = H 3 ОТС - H 4 ОТС = 2981,4 - 2790,384 = 191,016 кДж/кг,

N 34 ОТС =51,774 . 191,016 = 9,889 МВ т.

- отсек 4-5:

D 45 ОТС = D 34 - D 4 = 51,774 - 8,358 = 43,416 кг/с,

H 45 ОТС = H 4 ОТС - H 5 ОТС =2790,384 - 2608,104 = 182,28 кДж/кг,

N 45 ОТС =43,416 . 182,28 = 7,913 МВ т.

- отсек 5-6:

D 56 ОТС = D 45 - D 5 = 43,416 - 9,481 = 33, 935 кг/с,

H 56 ОТС = H 5 ОТС - H 6 ОТС =2608,104 - 2566,944 = 41,16 кДж/кг,

N 45 ОТС =33, 935 . 41,16 = 1,397 МВ т.

- отсек 6-7:

D 67 ОТС = D 56 - D 6 = 33, 935 - 13,848 = 20,087 кг/с,

H 67 ОТС = H 6 ОТС - H 7 ОТС =2566,944 - 2502,392 = 64,552 кДж/кг,

N 67 ОТС =20,087 . 66,525 = 1, 297 МВ т.

- отсек 7-К:

D ОТС = D 67 - D 7 = 20,087 - 13,699 = 6,388 кг/с,

H ОТС = H 7 ОТС - H к ОТС =2502,392 - 2442,933 = 59,459 кДж/кг,

N ОТС =6,388 . 59,459 = 0,38 МВ т.

3.5.1 Суммарная мощность отсеков турбины

3.5.2 Электрическая мощность турбоагрегата определяется по формуле:

N Э =N i

где механический и электрический КПД генератора,

N Э =83,46 . 0,99 . 0,98=80,97МВт.

2.9 Показатели тепловой экономичности турбоустановки

Полный расход теплоты на турбоустановку

, МВт

.

2. Расход теплоты на отопление

,

где з Т - коэффициент, учитывающий потери теплоты в системе отопления.

3. Общий расход теплоты на производственных потребителей

,

.

4. Общий расход теплоты на внешних потребителей

, МВт

.

5. Расход теплоты на турбинную установку по производству электроэнергии

,

6. Коэффициент полезного действия турбоустановки по производству электроэнергии (без учета собственного расхода электроэнергии)

,

.

7. Удельный расход теплоты на производство электроэнергии

,

2.10 Энергетические показатели ТЭЦ

Параметры свежего пара на выходе парогенератора.

- давление Р ПГ = 12,9МПа;

- КПД парогенератора брутто з ПГ = 0,92;

- температура t ПГ = 556 о С;

- h ПГ = 3488 кДж / кг при указанных Р ПГ и t ПГ.

КПД парогенератора, взят из характеристик котла Е-320/140

.

1. Тепловая нагрузка парогенераторной установки

, МВт

2. Коэффициент полезного действия трубопроводов (транспорта теплоты)

,

.

3. Коэффициент полезного действия ТЭЦ по производству электроэнергии

,

.

4. Коэффициент полезного действия ТЭЦ по производству и отпуску теплоты на отопление с учетом ПВК

,

.

ПВК при t Н =- 15 0 С работает,

5. Удельный расход условного топлива на производство электроэнергии

,

.

6. Удельный расход условного топлива на производство и отпуск тепловой энергии

,

.

7. Расход теплоты топлива на станцию

,

.

8. Полный коэффициент полезного действия энергоблока (брутто)

,

9. Удельный расход теплоты на энергоблок ТЭЦ

,

.

10. Коэффициент полезного действия энергоблока (нетто)

,

.

где Э С.Н - собственный удельный расход электроэнергии, Э С.Н =0,03.

11. Удельный расход условного топлива "нетто"

,

.

12. Расход условного топлива

кг/с

13. Расход условного топлива на выработку теплоты, отпущенной внешним потребителям

кг/с

14. Расход условного топлива на выработку электроэнергии

В Э У =В У -В Т У =13,214-8,757=4,457 кг/с

Заключение

В результате расчёта тепловой схемы электростанции на базе производственной теплофикационной турбины ПТ-80/100-130/13, работающей на режиме повышенной нагрузки при температуре окружающей среды воздуха получены следующие значения основных параметров, характеризующие электростанцию такого типа:

Расходы пара в отборах турбины

Расходы греющего пара на сетевые подогреватели

Отпуск тепла на отопление турбоустановкой

Q Т = 72,22МВт;

Отпуск тепла турбоустановкой на производственные потребители

Q П = 141,36 МВт;

Общий расход теплоты на внешних потребителей

Q ТП = 231,58 МВт;

Мощность на клеммах генератора

N э =80,97 МВт;

КПД ТЭЦ по производству электроэнергии

КПД ТЭЦ по производству и отпуску теплоты на отопление

Удельный расход топлива на производство электроэнергии

b Э У = 162,27г/кВт/ч

Удельный расход топлива на производство и отпуск тепловой энергии

b Т У = 40,427 кг/ГДж

Полный КПД ТЭЦ «брутто»

Полный КПД ТЭЦ «нетто»

Удельный расход условного топлива на станцию "нетто"

Список литературы

1. Рыжкин В.Я. Тепловые электрические станции: Учебник для вузов - 2-е изд., перераб. - М.: Энергия, 1976.-447с.

2. Александров А.А., Григорьев Б.А. Таблицы теплофизических свойств воды и водяного пара: Справочник. - М.: Изд. МЭИ, 1999. - 168с.

3. Полещук И.З. Составление и расчет принципиальных тепловых схем ТЭЦ. Методические указания к курсовому проекту по дисциплине “ТЭС и АЭС”, /Уфимский гос. авиац. тех.ун - т. - Уфа, 2003.

4. Стандарт предприятия (СТП УГАТУ 002-98). Требования к построению, изложению, оформлению.-Уфа.:1998.

5. Бойко Е.А. Паротрубинные энергетические установки ТЭС: Справочное пособие - ИПЦ КГТУ, 2006. -152с

6. . Тепловые и атомные электрические станции: Справочник/Под общей ред. чл.-корр. РАН А.В. Клименко и В.М. Зорина. - 3-е изд. - М.: Изд МЭИ, 2003. - 648с.: ил. - (Теплоэнергетика и теплотехника; Кн. 3).

7. . Турбины тепловых и атомных электрических станций: Учебник для вузов/ Под ред. А.Г, Костюка, В.В. Фролова. - 2-е изд., перераб. и доп. - М.: Изд МЭИ, 2001. - 488 с.

8. Расчет тепловых схем паротурбинных установок: Учебное электронное издание/Полещук И.З.. - ГОУ ВПО УГАТУ, 2005.

Условные обозначения энергетических установок, оборудования и их элементов (в т ексте, на рисунках, в индексах)

Д - деаэратор питательной воды;

ДН - дренажный насос;

К - конденсатор,котел;

КН - конденсатный насос;

ОЭ - охладитель дренажа;

ПрТС - принципиальная тепловая схема;

ПВД, ПНД - подогреватель регенеративный (высокого, низкого давления);

ПВК - пиковый водогрейный котёл;

ПГ - парогенератор;

ПЕ - пароперегреватель (первичный);

ПН - питательный насос;

ПС - подогреватель сальниковый;

ПСГ - сетевой подогреватель горизонтальный;

ПСВ - подогреватель сырой воды;

ПТ - паровая турбина; теплофикационная турбина с промышленным и отопительным отборами пара;

ПХОВ - подогреватель химически очищенной воды;

ПЭ - охладитель эжектора;

Р - расширитель;

ТЭЦ - теплоэлектроцентраль;

СМ - смеситель;

СХ - сальниковый холодильник;

ЦВД - цилиндр высокого давления;

ЦНД - цилиндр низкого давления;

ЭГ - электрогенератор;

Приложение А

Приложение Б

Диаграмма режимов ПТ-80/100

Приложение В

Отопительные графики качественного регулирования отпуска тепла по среднесуточной температуре наружного воздуха

Размещено на Allbest.ru

...

Подобные документы

    Расчет принципиальной тепловой схемы, построение процесса расширения пара в отсеках турбины. Расчет системы регенеративного подогрева питательной воды. Определение расхода конденсата, работы турбины и насосов. Суммарные потери на лопатку и внутренний КПД.

    курсовая работа , добавлен 19.03.2012

    Построение процесса расширения пара в турбине в H-S диаграмме. Определение параметров и расходов пара и воды на электростанции. Составление основных тепловых балансов для узлов и аппаратов тепловой схемы. Предварительная оценка расхода пара на турбину.

    курсовая работа , добавлен 05.12.2012

    Анализ методов проведения поверочного расчёта тепловой схемы электростанции на базе теплофикационной турбины. Описание конструкции и работы конденсатора КГ-6200-2. Описание принципиальной тепловой схемы теплоцентрали на базе турбоустановки типа Т-100-130.

    дипломная работа , добавлен 02.09.2010

    Тепловая схема энергоблока. Параметры пара в отборах турбины. Построение процесса в hs-диаграмме. Сводная таблица параметров пара и воды. Составление основных тепловых балансов для узлов и аппаратов тепловой схемы. Расчет дэаэратора и сетевой установки.

    курсовая работа , добавлен 17.09.2012

    Построение процесса расширения пара в h-s диаграмме. Расчет установки сетевых подогревателей. Процесс расширения пара в приводной турбине питательного насоса. Определение расходов пара на турбину. Расчет тепловой экономичности ТЭС и выбор трубопроводов.

    курсовая работа , добавлен 10.06.2010

    Выбор и обоснование принципиальной тепловой схемы блока. Составление баланса основных потоков пара и воды. Основные характеристики турбины. Построение процесса расширения пара в турбине на hs- диаграмме. Расчет поверхностей нагрева котла-утилизатора.

    курсовая работа , добавлен 25.12.2012

    Расчет паровой турбины, параметры основных элементов принципиальной схемы паротурбинной установки и предварительное построение теплового процесса расширения пара в турбине в h-s-диаграмме. Экономические показатели паротурбинной установки с регенерацией.

    курсовая работа , добавлен 16.07.2013

    Составление расчетной тепловой схемы ТУ АЭС. Определение параметров рабочего тела, расходов пара в отборах турбоагрегата, внутренней мощности и показателей тепловой экономичности и блока в целом. Мощность насосов конденсатно-питательного тракта.

    курсовая работа , добавлен 14.12.2010

    Процесс расширения пара в турбине. Определение расходов острого пара и питательной воды. Расчет элементов тепловой схемы. Решение матрицы методом Крамера. Код программы и вывод результатов машинных вычислений. Технико-экономические показатели энергоблока.

    курсовая работа , добавлен 19.03.2014

    Изучение конструкции турбины К-500-240 и тепловой расчет турбоустановки электростанции. Выбор числа ступеней цилиндра турбины и разбивка перепадов энтальпии пара по её ступеням. Определение мощности турбины и расчет рабочей лопатки на изгиб и растяжение.