Ремонт Дизайн Мебель

Определение кпд редуктора с цилиндрическими прямозубыми колесами. Московский Государственный Технический Университет им. Н. Э. Баумана Понятие о коэффициенте полезного действия

Лабораторная работа № 5.

Исследование КПД редуктора.


Цели и задачи работы : изучение метода экспериментального определения коэффициента полезного действия (КПД) редуктора, получение зависимости КПД редуктора от величины момента сопротивления, приложенного к выходному валу редуктора, оценка параметров математической модели, описывающей зависимость КПД редуктора от момента сопротивления и определение величины момента сопротивления, соответствующего максимальному значению КПД.

5.1.Общие сведения о КПД механизмов.

Энергия, подводимая к механизму в виде работы А д движущих сил и моментов за цикл установившегося режима, расходуется на совершение полезной работы А пс т.е. работы сил и моментов полезного сопротивления, а также на совершение работы А т, связанной с преодолением сил трения в кинематических парах и сил сопротивления среды: А д = А пс + А т. Значения А пс и А т подставляются в это и последующие уравнения по абсолютной величине. Механическим коэффициентом полезного действия называется отношение :

Таким образом КПД показывает, какая доля механической энергии, подведенной к машине, полезно расходуется на совершение той работы, для которой машина создана, т.е. является важной характеристикой механизма машин. Так как потери на трение неизбежны, то всегда <1. В уравнении (5.1) вместо работ А д и А пс, совершаемых за цикл, можно подставлять средние за цикл значения соответствующих мощностей:

(5.2)

Редуктор - это зубчатый механизм, предназначенный для уменьшения угловой скорости выходного вала по отношению к входному. Отношение угловой скорости на входе к угловой скорости на выходе называют передаточным отношением редуктора:

Для редуктора уравнение (5.2) принимает вид:

(5.4)

Здесь М С и М Д - средние значения моментов на выходном и входном валах редуктора. Экспериментальное определение КПД основано на измерении значений М С и М д и расчете по формуле (5.4).

5.2.Факторы. Определение поля варьирования факторов.

Факторами называют параметры системы, которые оказывают влияние на измеряемую величину и могут целенаправленно изменяться в процессе эксперимента. При исследовании КПД редуктора факторами являются момент сопротивления М C на выходном валу и частота вращения входного вала редуктора n 2 .

На первом этапе эксперимента необходимо определить предельные значения факторов, которые можно реализовать и измерить на данной установке, и построить поле варьирования факторов. Приближенно это поле можно построить по четырем точкам. Для этого при минимальном моменте сопротивления (тормоз установки выключен) регулятором частоты вращения устанавливают ее минимальное и максимальное значения. В журнале регистрируют показания тахометра и , а также соответствующие показания индикатора тормоза и . При этом, если значение превышает верхний предел шкалы тахометра, то принимают ее равной наибольшему значению этой шкалы.

Затем включают тормоз и регулятором момента устанавливают максимальный момент сопротивления М C max . Регулятором частоты вращения устанавливают вначале максимальное для данной нагрузки значение частоты , а затем минимальное устойчивое (около 200 об/мин). В журнале регистрируют значения частоты , и соответствующие им показания индикатора тормоза и Изображая полученные четыре точки на координатной плоскости и соединяя их прямыми линиями, строят поле варьирования факторов (рис. 5.1). Внутри этого поля (с некоторыми отступлениями от границ) выбирают область исследования - пределы изменения факторов в эксперименте. При однофакторном эксперименте изменяют только один из факторов, все остальные поддерживают на заданном постоянном уровне. В этом случае область исследования представляет собой отрезок прямой (см. рис. 5.1, прямая n д =const).

5.3. Выбор модели и планирование эксперимента.

В качестве математической модели исследуемого процесса наиболее часто используют полиномы. В данном случае для зависимости при n д =const

принимаем полином вида

Задача эксперимента заключается в получении эмпирических данных для вычисления оценок коэффициентов этой модели. Так как при М С = 0 КПД системы равен нулю, то полином можно упростить, исключив из него член b 0 , который равен нулю. Результаты эксперимента обрабатывают на ЭВМ по программе "KPD", которая позволяет определять коэффициенты модели b k и выводить на печать графики зависимостей: экспериментальной с указанием доверительных интервалов и построенной по модели , а также значение момента сопротивления М С0 , соответствующего максимальному

5.4. Описание экспериментальной установки.

Исследование КПД редуктора проводят на установке типа ДП-4. Установка (рис.5.2) содержит объект исследования - редуктор 2 (планетарный, червячный, рядный, волновой), источник механической энергии - электродвигатель 1, потребитель энергии - порошковый электромагнитный тормоз 3, два регулятора: потенциометр 5 регулятора частоты вращения двигателя и потенциометр 4 регулятора момента тормоза, а также устройства для измерения частоты - вращения двигателя (тахометр 6) и крутящих моментов на валу двигателя и тормоза.

Устройства для измерения моментов двигателя и тормоза аналогичны по конструкции (рис.5.3). Они состоят из опоры с подшипниками качения, которая обеспечивает возможность поворота статора 1 и ротора 2 относительно основания, измерительного рычага с плечом l и , опирающегося на пластинчатую пружину 4 и стрелочного индикатора 3. Прогиб пружины измеряют с помощью индикатора, значение прогиба пропорционально крутящему моменту на статоре. Значение момента на роторе приближенно оценивают по моменту на статоре, пренебрегая моментами трения и вентиляционных потерь. Для тарировки индикаторов установка комплектуется съемными рычагами 6, на которые с шагом l нанесены деления, и грузами 5. На тарировочных рычагах двигателя lд = 0.03 м, тормоза l д =0.04 м. Массы грузов равны: m = 0.1 кг и m 5т = 1 кг соответственно. Порошковый тормоз представляет собой устройство, состоящее из ротора и статора, в кольцевом зазоре между которыми размещен ферромагнитный порошок. Изменяя потенциометром 5 напряжение на обмотках статора тормоза, можно уменьшать или увеличивать силу сопротивления сдвигу между частицами порошка и момент сопротивления на валу тормоза.

5.5. Тарировка индикаторов измерителей моментов.

Тарировка - экспериментальное определение зависимости (аналитической или графической) между показаниями измерительного прибора (индикатора) и измеряемой величиной (крутящим моментом). При тарировке измерительное устройство с помощью рычага и груза нагружают известными по значению крутящими моментами М т i и регистрируют показания индикатора .
Чтобы исключить влияние начального момента М т o = G 5 l o , переходят из системы координат f" 0" M" в систему f 0 M (рис. 5.4), т.е. устанавливают шкалу индикатора на ноль после размещения груза G 5 у нулевого значения шкалы на рычаге.

При тарировке находят средние значения показаний индикатора тормоза на всех ступенях нагрузки М т c i . Тарировочная зависимость для момента двигателя имеет вид. Область исследования и уровни фактора при тарировке определяются длиной и шагом разметки рычагов 6 и массами грузов 5.

Для получения тарировочной зависимости проводят N оригинальных опытов (при различных уровнях М т i ) с m повторами на каждом уровне, где N >=k + 1; m >= 2 ; k - число коэффициентов модели (принимают N = 5, m >= 2 ; k - число коэффициентов модели (принимают N = 5 , m = 3). Коэффициенты тарировочной зависимости b k рассчитывают по массиву результатов тарировки на ЭВМ по программе "KPD".

1. ЦЕЛЬ РАБОТЫ

Углубление знаний теоретического материала, получение практических навыков самостоятельного экспериментального определения редукторов.

2. ОСНОВНЫЕ ТЕОРЕТИЧЕСКИЕ ПОЛОЖЕНИЯ

Механический коэффициент полезного действия редуктора представляет собой отношение мощности, полезно затраченной (мощности сил сопротивления N c к мощности движущих сил N д на входном валу редуктора:

Мощности движущих сил и сил сопротивления могут быть определены соответственно по формулам

(2)

(3)

где М д и М с – моменты соответственно движущих сил и сил сопротивления, Нм ; и - угловые скорости валов редуктора соответственно входного и выходного, с -1 .

Подставляя (2) и (3) в (1), получим

(4)

где - передаточное отношение редуктора.

Любая сложная машина состоит из ряда простых механизмов. КПД машины может быть легко определен, если известны КПД всех входящих в нее простых механизмов. Для большинства механизмов разработаны аналитические методы определения КПД, однако отклонения в чистоте обработки трущихся поверхностей деталей, точности их изготовления, изменения нагрузки на элементы кинематических пар, условий смазки, скорость относительного движения и др., приводят к изменению величины коэффициента трения.

Поэтому важно уметь экспериментально определять КПД исследуемого механизма в конкретных условиях эксплуатации.

Необходимые для определения КПД редуктора параметры (М д, М с и L р ) можно определить с помощью приборов ДП-3К.

3. УСТРОЙСТВО ПРИБОРА ДП-3К

Прибор (рисунок) смонтирован на литом металлическом основании 1 и состоит из узла электродвигателя 2 с тахометром 3, нагрузочного устройства 4 и исследуемого редуктора 5.

3 6 8 2 5 4 9 7 1


11 12 13 14 15 10


Рис. Кинематическая схема прибора ДП-3К

Корпус электродвигателя шарнирно закреплен в двух опорах так, что ось вращения вала двигателя совпадает с осью поворота корпуса. Фиксация корпуса двигателя от кругового вращения осуществляется плоской пружиной 6. При передаче крутящего момента от вала электродвигателя редуктора пружина создает реактивный момент, приложенный к корпусу электродвигателя. Вал электродвигателя сочленяется с входным валом редуктора через муфту. Противоположный его конец сочленен с валом тахометра.

Редуктор в приборе ДК-3К состоит из шести одинаковых пар зубчатых колес, смонтированных на шарикоподшипниковых опорах в корпусе.



Верхняя часть редукторов имеет легкосъемную крышку, выполненную из органического стекла, и служит для визуального наблюдения и замера зубчатых колес при определении передаточного отношения.

Нагрузочное устройство представляет собой магнитный порошковый тормоз, принцип действия которого основан на свойстве намагниченной среды оказывать сопротивление перемещению в ней ферромагнитных тел. в качестве намагничиваемой среды в конструкции нагрузочного устройства применена жидкая смесь минерального масла и железного порошка. Корпус нагрузочного устройства установлен балансирно по отношению к основанию прибора на двух подшипниках. Ограничение от кругового вращения корпуса осуществляется плоской пружиной 7, которая создает реактивный момент, уравновешивающий момент сил сопротивления (тормозной момент), создаваемый нагрузочным устройством.

Измерительные устройства крутящего и тормозного моментов состоят из плоских пружин 6 и 7 и индикаторов часового типа 8 и 9, измеряющих прогибы пружин, пропорциональные величинам моментов. На пружинах дополнительно наклеены тензодатчики, сигнал с которых через тензометрический усилитель может быть также зафиксирован на осциллографе.

На лицевой части основания прибора расположена панель управления 10, на которой установлены:

Тумблер 11 включения и выключения электродвигателя;

Ручка 12 регулирования частоты вращения вала электродвигателя;

Сигнальная лампа 13 включения прибора;

Тумблер 14 включения и выключения цепи обмотки возбуждения нагрузочного устройства;

Ручка 15 регулировки возбуждения нагрузочного устройства.

При выполнении данной лабораторной работы следует:

Определить передаточное отношение редуктора;

Оттарировать измерительные устройства;

Определить КПД редуктора в зависимости от сил сопротивления и от числа оборотов электродвигателя .



4. ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

4.1. Определение передаточного отношения редуктора

Передаточное отношение редуктора прибора ДП-3К определяется по формуле

(5)

где z 2 , z 1 – число зубьев соответственно большего и меньшего колес одной ступени; к =6 – число ступеней редуктора с одинаковым передаточным отношением.

Для редуктора прибора ДП-3К передаточное отношение одной ступени

Найденные значения передаточного отношения i p проверить опытным путем.

4.2. Тарировка измерительных устройств

Тарировка измерительных устройств производится при отключенном от источника электрического тока приборе с помощью тарировочных приспособлений, состоящих из рычагов и грузов.

Для тарировки измерительного устройства момента электродвигателя необходимо:

Установить на корпусе электродвигателя тарировочное устройство ДП3А сб. 24;

Установить груз на рычаге тарировочного приспособления на нулевую отметку;

Установить стрелку индикатора на нуль;

Устанавливая груз на рычаге на последующие деления, фиксировать показания индикатора и соответствующее деление на рычаге;

Определить среднее значение m ср цены деления индикатора по формуле

(6)

где К – количество измерений (равно количеству делений на рычаге); G – вес груза, Н ; N i – показания индикатора, - расстояние между делениями на рычаге (м ).

Определение среднего значения m c .ср цены деления индикатора нагрузочного устройства производится установкой на корпус нагрузочного устройства тарировочного приспособления ДП3А сб. 25 по аналогичной методике.

Примечание. Вес грузов в тарировочных устройствах ДП3К сб. 24 и ДП3К сб. 25 составляет соответственно 1 и 10 Н .

4.3. Определение КПД редуктора

Определение КПД редуктора в зависимости от сил сопротивления, т.е. .

Для определения зависимости необходимо:

Включить тумблер 11 электродвигателя прибора и ручкой 12 регулировки скорости установить заданную преподавателем частоту вращения n;

Установить ручку 15 регулировки тока возбуждения нагрузочного устройства в нулевое положение, включить тумблер 14 в цепи питания возбуждения;

Плавным поворотом ручки регулирования тока возбуждения установить по стрелке индикатора первое значение (10 делений) момента М с сопротивления;

Ручкой 12 регулировки скорости установить (откорректировать) первоначальную заданную частоту вращения n ;

Зафиксировать показания h 1 и h 2 индикаторов 8 и 9;

Дальнейшей регулировкой тока возбуждения увеличить момент сопротивления (нагрузки) до следующей заданной величины (20, 30, 40, 50, 60, 70, 80 делений);

Поддерживая частоту вращения неизменной, зафиксировать показания индикаторов;

Определить значения моментов движущих сил М д и сил сопротивления М с для всех замеров по формулам

(7)

(8)

Определить для всех замеров КПД редуктора по формуле (4);

Занести показания индикаторов h 1 и h 2 , значения моментов М д и М с и найденные значения КПД редуктора для всех замеров в таблицу;

Построить график зависимости .

4.4. Определение КПД редуктора в зависимости от числа оборотов электродвигателя

Для определения графической зависимости необходимо:

Включить тумблер 14 цепи питания и возбуждения и ручкой 15 регулировки тока возбуждения установить заданное преподавателем значение момента М с на выходном валу редуктора;

Включить электродвигатель прибора (тумблер 11);

Устанавливая ручкой 12 регулировки скорости последовательно ряд значений (от минимального до максимального) частоты вращения вала электродвигателя и поддерживая неизменное значение момента М с нагрузки, зафиксировать показания индикатора h 1 ;

Дать качественную оценку влияния частоты вращения n на КПД редуктора.

5. СОСТАВЛЕНИЕ ОТЧЕТА

Отчет о проделанной работе должен содержать наименование,

цель работы и задачи определения механического КПД, основные технические данные установки (вид редуктора, количество зубьев на колесах, тип электродвигателя, погрузочного устройства, измерительные устройства и приборы), расчеты, описание тарироввки измерительных устройств, таблицы экспериментально полученных данных.

6. КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Что называют механическим КПД? Его размерность.

2. От чего зависит механический КПД?

3. Почему механический КПД определяют опытным путем?

4. Что является датчиком в измерительных устройствах крутящего и тормозного моментов?

5. Описать нагрузочное устройство и его принцип действия.

6. Каким образом изменится механический КПД редуктора, если момент сил сопротивления увеличится (уменьшится) в два раза?

7. Каким образом изменится механический КПД редуктора, если момент сил сопротивления увеличится (уменьшится) в 1,5 раза?

Лабораторная работа 9

1. Цель работы

Исследование КПД редуктора при различных режимах нагружения.

2. Описание установки

Для изучения работы редуктора используется прибор марки ДП3М. Он состоит из следующих основных узлов (рис. 1): испытуемого редуктора 5, электродвигателя 3 с электронным тахометром 1, нагрузочного устройства 6, устройства для замера моментов 8, 9. Все узлы смонтированы на одном основании 7.

Корпус электродвигателя шарнирно закреплен в двух опорах 2 так, что ось вращения вала электродвигателя совпадает с осью поворота корпуса. Фиксация корпуса электродвигателя от кругового вращения осуществляется плоской пружиной 4.

Редуктор состоит из шести одинаковых прямозубых цилиндрических передач с передаточным числом 1,71 (рис. 2). Блок зубчатых колес 19 установлен на неподвижной оси 20 на шарикоподшипниковой опоре. Конструкция блоков 16, 17, 18 аналогична блоку 19. Передача крутящего момента от колеса 22 к валу 21 осуществляется через шпонку.

Нагрузочное устройство представляет собой магнитный порошковый тормоз, принцип действия которого основан на свойстве намагниченной среды оказывать сопротивление перемещению в ней ферромагнитных тел. В качестве намагничиваемой среды применена жидкая смесь минерального масла и стального порошка.

Измерительные устройства крутящего и тормозного моментов состоят из плоских пружин, создающих реактивные моменты соответственно для электродвигателя и нагрузочного устройства. На плоских пружинах наклеены тензодатчики, соединенные с усилителем.

На лицевой части основания прибора расположена панель управления: кнопка включения питания прибора «Сеть» 11; кнопка включения питания цепи возбуждения нагрузочного устройства «Нагрузка» 13; кнопка включения электродвигателя «Двигатель» 10; ручка регулирования частоты вращения электродвигателя «Регулирование скорости» 12; ручка регулирования тока возбуждения нагрузочного устройства 14; три амперметра 8, 9, 15 для измерения соответственно частоты n, момента М 1 момента М 2 .

Рис. 1. Схема установки

Рис. 2. Испытываемый редуктор

Техническая характеристика прибора ДП3М:

3. Расчетные зависимости

Определение КПД редуктора основано на одновременном измерении моментов на входном и выходном валах редуктора при установившемся значении частоты вращения. При этом расчет КПД редуктора производится по формуле:

= , (1)

где М 2 – момент, создаваемый нагрузочным устройством, Н×м; М 1 – момент, развиваемый электродвигателем, Н×м; u – передаточное число редуктора.

4. Порядок выполнения работы

На первом этапе при заданной постоянной частоте вращения электродвигателя производится исследование КПД редуктора в зависимости от момента, создаваемого нагрузочным устройством.

Сначала включается электропривод и ручкой регулировки скорости устанавливается заданная частота вращения. Ручка регулировки тока возбуждения нагрузочного устройства устанавливается в нулевое положение. Включается цепь питания возбуждения. Плавным поворотом ручки регулировки возбуждения задается первое из заданных значений момента нагрузки на валу редуктора. Ручкой регулировки скорости поддерживается заданная частота вращения. По микроамперметрам 8, 9 (рис. 1) фиксируются моменты на валу двигателя и нагрузочного устройства. Дальнейшей регулировкой тока возбуждения увеличивают момент нагрузки до следующей заданной величины. Поддерживая частоту вращения неизменной, определяют следующие значения М 1 и М 2 .

Результаты эксперимента заносятся в таблицу 1, и строится график зависимости = f(M 2) при n = const (рис. 4).

На втором этапе при заданном постоянном моменте нагрузки M 2 исследуется КПД редуктора в зависимости от частоты вращения электродвигателя.

Включается цепь питания возбуждения и ручкой регулировки тока возбуждения устанавливается заданное значение момента на выходном валу редуктора. Ручкой регулировки скорости устанавливается ряд частот вращения (от минимальной до максимальной). Для каждого скоростного режима поддерживается неизменный момент нагрузки M 2 , по микроамперметру 8 (рис. 1) фиксируется момент на валу двигателя М 1 .

Результаты эксперимента заносятся в таблицу 2, и строится график зависимости = f(n) при M 2 = const (рис. 4).

5. Заключение

Объясняется, из чего складываются потери мощности в зубчатой передаче и как определяется КПД многоступенчатого редуктора.

Перечисляются условия, позволяющие повысить КПД редуктора. Дается теоретическое обоснование полученных графиков = f(M 2); = f(n).

6. Оформление отчета

– Подготовить титульный лист (см. образец на стр. 4).

– Изобразить кинематическую схему редуктора.

Подготовить и заполнить табл. 1.

Таблица 1

от момента, создаваемого нагрузочным устройством

– Построить график зависимости

Рис. 4. График зависимости = f(М 2) при n = const

Подготовить и заполнить табл. 2.

Таблица 2

Результаты исследования КПД редуктора в зависимости

от частоты вращения электродвигателя

– Построить график зависимости .

n, мин -1

Рис. 5. График зависимости = f(n) при M 2 = const

Дать заключение (см. пункт 5).

Контрольные вопросы

1. Опишите конструкцию прибора ДПЗМ, из каких основных узлов он состоит?

2. Какие потери мощности имеют место в зубчатой передаче и чему равен ее КПД?

3. Как изменяются от ведущего к ведомому валу такие характеристики зубчатой передачи, как мощность, крутящий момент, частота вращения?

4. Как определяется передаточное отношение и КПД многоступенчатого редуктора?

5. Перечислите условия, позволяющие повысить КПД редуктора.

6. Порядок выполнения работы при исследовании КПД редуктора в зависимости от момента, подаваемым нагрузочным устройством.

7. Порядок выполнения работы при исследовании КПД редуктора в зависимости от частоты вращения двигателя.

8. Дайте теоретическое объяснение полученных графиков = f(M 2); = f(n).

Библиографический список

1. Решетов, Д. Н. Детали машин: – учебник для студентов машинострои-тельных и механических специальностей вузов / Д. Н. Решетов. – М.: Машиностроение, 1989. – 496 с.

2. Иванов, М. Н. Детали машин: – учебник для студентов высших техни-ческих учебных заведений / М. Н. Иванов. – 5-е изд., перераб. – М.: Высшая школа, 1991.– 383 с.

ЛАБОРАТОРНАЯ РАБОТА № 8

В большинстве механизмов с электрическим двигателем стоит цилиндрический редуктор. Он снижает количество оборотов и повышает мощность агрегата. Зубчатый механизм передачи крутящего момента через цилиндрические колеса имеет наиболее высокий КПД по сравнению с другими способами. Различные виды цилиндрических редукторов широко применяются в металлургическом и машиностроительном оборудовании, электрическом инструменте и автомобилях.

Конструктивные особенности

Основой любого редуктора является передающее вращательный момент и изменяющее число оборотов вала. Для цилиндрических зацеплений характерна возможность вращаться в обе стороны. При необходимости ведомый вал с колесом подключается к двигателю и становится ведущим. Они в данной конструкции расположены параллельно, горизонтально и вертикально. Устройство цилиндрических редукторов может быть самое разное, но оно обязательно включает в свою конструкцию:

  • ведущий;
  • ведомый вал;
  • шестерню;
  • колесо;
  • подшипники;
  • корпус;
  • крышки;
  • систему смазки.

Корпус и крышка отливаются из чугуна или делаются сварными из низкоуглеродистого листа толщиной 4 – 10 мм в зависимости от габаритов и мощности узла. Сварными делают маленькие редуктора. Остальные имеют крепкий литой корпус.

Характеристика цилиндрических редукторов

Количество зацеплений, тип зуба и взаимное расположение валов для всех видов оборудования описывает ГОСТ Редукторы цилиндрические. В нем указаны типоразмеры всех деталей, которые могут применяться в цилиндрических редукторах при различных количествах ступеней. Максимальное одной пары 6,5. Общее многоступенчатого редуктора может быть до 70.

Больше чем у цилиндрического редуктора может быть передаточное число у червячной передачи,оно может достигать 80. При этом они компактные, но используются редко из-за низкого КПД. У цилиндрических одноступенчатых редукторов КПД 99 – 98%, самый высокий из всех видов передач.Отличаются червячные и цилиндрические редукторы расположением валов. Если у цилиндрических они параллельные, то червяк располагается к колесу под углом. Следовательно валы ведущий и ведомый выходят из перпендикулярно расположенных боковых стенок корпуса.

Цилиндрические редуктора самые шумные, при соприкосновении зубьев происходит удар поверхности одну о другую. Это исключает сильное трение и перегрев.

Для смазки достаточно залить масло в поддон, чтобы нижние шестерни в него частично погрузились. При вращении зубья захватывают масло и разбрызгивают его на другие детали.

Проектирование и порядок расчета

Расчет будущего редуктора начинается с определения передаточного момента и подборки его из нормированных пар. После этого уточняются диаметры деталей и межосевое расстояние валов. Составляется кинематическая схема, определяется оптимальная форма корпуса и крышки, номера подшипников. В сборочный чертеж входит кинематическая схема двухступенчатого редуктора, система смазки и способы ее контроля, типы подшипников и места их установки.

ГОСТ 16531-83 описывает все возможные виды и типоразмеры зубчатых колес, которые могут применяться в цилиндрических редукторах с указанием модуля, количества зубьев и диаметра. По размеру шестерни подбирается вал. Его прочность рассчитывается с учетом вращательного момента на скручивание и изгиб. Определяется минимальный размер, умножается на коэффициент прочности. Затем выбирается ближайший больший нормализованный размер вала. Шпонка рассчитывается только на срез и подбирается аналогично.

Скачать ГОСТ 16531-83

По диаметру вала выбирается подшипник. Его тип определяется направлением зуба. При косозубой передаче ставят упорные, более дорогие. Прямозубая передача не нагружает их в осевом направлении, и однорядные шарикоподшипники работают по несколько тысяч часов.

Схема сборки указывается на чертеже внизу и подробно расписывается в технологической документации, которая выдается в производство вместе с чертежами. На главном чертеже с общим видом в таблице указываются технические характеристики редуктора, которые затем переносятся в паспорт:

  • количество ступеней;
  • передаточное число;
  • число оборотов ведущего вала;
  • мощность на выходе;
  • габариты;

Дополнительно могут указываться вертикальное расположение зацепления, направление вращение вала и способ установки: фланцевый или на лапах.

Виды цилиндрических редукторов

Цилиндрические редукторы разнообразны по конструкции, размерам и мощности, они делятся на виды по нескольким характеристикам:

  • тип крепления;
  • расположение валов;
  • количество ступеней;
  • нарезка зуба.

К характеристикам могут относиться виды подшипников и тип соединения валов.

Редукторы цилиндрические одноступенчатые могут крепиться к двигателю и корпусу рабочего узла фланцами. Конструкция компактная, с минимальными затратами материалов.В основном они устанавливаются на подошву с выступами по периметру или на лапки с отверстиями под . Небольшие по габариту узлы могут устанавливаться на сварной каркас. Для габаритных агрегатов делается специальный фундамент.

Расположение валов

Входной и выходной валы могут располагаться горизонтально, вертикально, параллельно друг другу, но в разных плоскостях для многоступенчатых узлов. При наличии только одного зацепления, валы находятся в одной плоскости, строго вертикальной или горизонтальной. Они редко выводятся в одну сторону, только при возможности компактного расположения двигателя и рабочего узла. У двухступенчатого цилиндрического редуктора межосевое расстояние больше и можно монтировать двигатель со стороны исполнительного механизма.

Редукторы цилиндрические могут выпускать с вертикальным расположением валов. Их удобно устанавливать на машины, но верхнее зацепление и подшипники смазываются слабо. Для длительной работы с большими нагрузками они не подходят.

Корпус редуктора цилиндрического горизонтального габаритный, занимает много места. Он меньше греется, выдерживает нагрузки и вибрацию, устойчив.В моделях от 3 и более ступеней, валы располагаются горизонтально. Смазка достает до всех подшипников. В многорядных конструкциях делается дополнительно орошение сверху, с маслопровода, установленного в крышку.

Коробки скоростей

Разновидность цилиндрического редуктора с подвижным промежуточным валом является широко известной коробкой скоростей. При изменении положения вала одни пары выходят из зацепления, другие начинают взаимодействовать. В результате изменяется передаточное число, скорость вращения на выходе.

Коробки скоростей делаются с прямым зубом. Косозубые встречаются редко, когда большие нагрузки на исполнительный механизм.

Применение цилиндрических редукторов

– понижение числа оборотов двигателя и увеличение мощности на выходном валу. Сборка цилиндрического редуктора не представляет сложности. По центру отверстий проходит разъем корпуса и крышки. Подшипники насаживаются на валы, устанавливаются в заготовленные гнезда и подпираются снаружи крышками.

Колеса и шестерни крепятся на валы с помощью шпонок.

Для регулировки межосевого расстояния необходимо с большой точностью делать расточку корпуса.

Техобслуживание редукторов простое. Надо регулярно доливать масло, периодически менять его. Детали, расположенные внутри, рассчитаны на длительную эксплуатацию в течение как минимум 10 лет.

Применяются редуктора в различных отраслях промышленности. Отдельные типы крупного оборудования способны выдержать любые погодные условия. Их устанавливают в карьерах и на открытых площадках, на козловых кранах.

Прокатное и кузнечно-прессовое оборудование не сможет работать без редукторов. В этой отрасли востребовано много разновидностей редукторов. Прямозубые стоят на кранах. Мощные шевронные вращают кривошипные прессы, вальцы, манипуляторы, подающие металл.

Прокатные т-правильные станы работают исключительно благодаря клетям, передающим вращение двигателя на валки и рабочие узлы.




Под каждым капотом прячется коробка скоростей. На каждом станке имеется редуктор или несколько. Маленькие передачи установлены в электроинструменте и регулируют скорость вращения шпинделя дрели, болгарки и фрезера.

Достоинства и недостатки

Цилиндрический передаточный механизм получил широкое применение в различных областях. Он имеет неоспоримые достоинства по сравнению с червячным:

  • высокий КПД;
  • не греется;
  • работает в обе стороны.

Преимущества и недостатки цилиндрического редуктора зависят от особенностей зубчатого зацепления и других конструктивных элементов.

Преимущества

Основным положительным моментом является высокий КПД. Он значительно превосходит мощности на выходе при одинаковых двигателях, все зубчатые и другие виды передач.

Узел может работать длительное время без перерывов, переключаться бесконечное количество раз с одного режима на другой и даже менять направление вращения.

Выделение тепла минимальное. Нет надобности ставить систему охлаждения. Смазка разбрызгивается нижними колесами, смазывает верхние шестерни, подшипники и собирает вниз, в поддон, всю грязь, сколовшиеся частицы металла.Достаточно периодически доливать масло и раз в 3 – 6 месяцев менять его.Частота профилактических мероприятий зависит от режима работы.

Выходной вал установлен в подшипники качения и практически не имеет люфта. Перемещение его достаточно точное, чтобы использовать зубчатый механизм в качестве привода точных приспособлений и приборов. Осевое и радиальное биение сопрягаемых деталей не влияет на работу механизма.

Эффективность работы не зависит от перепадов напряжения. Передаточное число стабильно. Если падает скорость вращения двигателя, пропорционально замедляется вращение ведомого колеса. Мощность остается неизменной.

Недостатки

Положительное качество – отсутствие трения и торможения, в определенных условиях создает проблемы. В грузоподъемных механизмах при установке цилиндрического редуктора надо ставить сильный тормоз, чтобы удержатьтяжелые предметы на весу и предотвратить их самостоятельное опускание. В червячных передачах ведущим может быть только червяк и из-за большого трения возникает эффект самоторможения.

Проблема всех зубчатых зацеплений в отсутствии предохранительного механизма.

При перегрузе или резком включении ремень проскальзывает по шкиву. Зуб может только сломаться, и деталь придется менять. Как дополнительные предохранители используются шпонки. Они рассчитываются на срез без запаса прочности. Заменить срезанную муфтой простую деталь значительно проще.

Стоимость рабочих деталей большая. Технология изготовления длительная и сложная.При этом зуб постепенно стирается, увеличивается зазор между рабочими поверхностями. Изменять межцентровое расстояние, как в реечных и червячных передачах в редукторе нельзя.Приходится периодически заменять шестерни, колеса, подшипники.

Чем больше стирается эвольвента, тем сильнее стучат друг об друга зубья, и шумит редуктор.

Редуктор червячный — один из классов механических редукторов. Редукторы классифицируются по типу механической передачи . Винт, который лежит в основе червячной передачи, внешне похож на червяка, отсюда и название.

Мотор-редуктор - это агрегат, состоящий из редуктора и электродвигателя, которые состоят в одном блоке. Мотор-редуктор червячный создан для того, чтобы работать в качестве электромеханического двигателя в различных машинах общего назначения. Примечательно то, что данный вид оборудования отлично работает как при постоянных, так и при переменных нагрузках.

В червячном редукторе увеличение крутящего момента и уменьшение угловой скорости выходного вала происходит за счет преобразования энергии, заключенной в высокой угловой скорости и низком крутящем моменте на входном валу.

Ошибки при расчете и выборе редуктора могут привести к преждевременному выходу его из строя и, как следствие, в лучшем случае к финансовым потерям.

Поэтому работу по расчету и выбору редуктора необходимо доверять опытным специалистам-конструкторам, которые учтут все факторы от расположения редуктора в пространстве и условий работы до температуры нагрева его в процессе эксплуатации. Подтвердив это соответствующими расчетами, специалист обеспечит подбор оптимального редуктора под Ваш конкретный привод.

Практика показывает, что правильно подобранный редуктор обеспечивает срок службы не менее 7 лет — для червячных и 10-15 лет для цилиндрических редукторов.

Выбор любого редуктора осуществляется в три этапа:

1. Выбор типа редуктора

2. Выбор габарита (типоразмера) редуктора и его характеристик.

3. Проверочные расчеты

1. Выбор типа редуктора

1.1 Исходные данные:

Кинематическая схема привода с указанием всех механизмов подсоединяемых к редуктору, их пространственного расположения относительно друг друга с указанием мест крепления и способов монтажа редуктора.

1.2 Определение расположения осей валов редуктора в пространстве.

Цилиндрические редукторы:

Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной горизонтальной плоскости - горизонтальный цилиндрический редуктор.

Ось входного и выходного вала редуктора параллельны друг другу и лежат только в одной вертикальной плоскости - вертикальный цилиндрический редуктор.

Ось входного и выходного вала редуктора может находиться в любом пространственном положении при этом эти оси лежат на одной прямой (совпадают) - соосный цилиндрический или планетарный редуктор.

Коническо-цилиндрические редукторы:

Ось входного и выходного вала редуктора перпендикулярны друг другу и лежат только в одной горизонтальной плоскости.

Червячные редукторы:

Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости - одноступенчатый червячный редуктор.

Ось входного и выходного вала редуктора может находиться в любом пространственном положении, при этом они параллельны друг другу и не лежат в одной плоскости, либо они скрещиваются под углом 90 градусов друг другу и не лежат в одной плоскости - двухступенчатый редуктор.

1.3 Определение способа крепления, монтажного положения и варианта сборки редуктора.

Способ крепления редуктора и монтажное положение (крепление на фундамент или на ведомый вал приводного механизма) определяют по приведенным в каталоге техническим характеристикам для каждого редуктора индивидуально.

Вариант сборки определяют по приведенным в каталоге схемам. Схемы «Вариантов сборки» приведены в разделе «Обозначение редукторов».

1.4 Дополнительно при выборе типа редуктора могут учитываться следующие факторы

1) Уровень шума

  • наиболее низкий - у червячных редукторов
  • наиболее высокий - у цилиндрических и конических редукторов

2) Коэффициент полезного действия

  • наиболее высокий - у планетарных и одноступенчатых цилиндрических редукторах
  • наиболее низкий - у червячных, особенно двухступенчатых

Червячные редукторы предпочтительно использовать в повторно-кратковременных режимах эксплуатации

3) Материалоемкость для одних и тех же значений крутящего момента на тихоходном валу

  • наиболее низкая - у планетарных одноступенчатых

4) Габариты при одинаковых передаточных числах и крутящих моментах:

  • наибольшие осевые - у соосных и планетарных
  • наибольшие в направлении перпендикулярном осям - у цилиндрических
  • наименьшие радиальные - к планетарных.

5) Относительная стоимость руб/(Нм) для одинаковых межосевых расстояний:

  • наиболее высокая - у конических
  • наиболее низкая - у планетарных

2. Выбор габарита (типоразмера) редуктора и его характеристик

2.1. Исходные данные

Кинематическая схема привода, содержащая следующие данные:

  • вид приводной машины (двигателя);
  • требуемый крутящий момент на выходном валу Т треб, Нхм, либо мощность двигательной установки Р треб, кВт;
  • частота вращения входного вала редуктора n вх, об/мин;
  • частота вращения выходного вала редуктора n вых, об/мин;
  • характер нагрузки (равномерная или неравномерная, реверсивная или нереверсивная, наличие и величина перегрузок, наличие толчков, ударов, вибраций);
  • требуемая длительность эксплуатации редуктора в часах;
  • средняя ежесуточная работа в часах;
  • количество включений в час;
  • продолжительность включений с нагрузкой, ПВ %;
  • условия окружающей среды (температура, условия отвода тепла);
  • продолжительность включений под нагрузкой;
  • радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала F вых и входного вала F вх;

2.2. При выборе габарита редуктора производиться расчет следующих параметров:

1) Передаточное число

U= n вх /n вых (1)

Наиболее экономичной является эксплуатация редуктора при частоте вращения на входе менее 1500 об/мин, а с целью более длительной безотказной работы редуктора рекомендуется применять частоту вращения входного вала менее 900 об/мин.

Передаточное число округляют в нужную сторону до ближайшего числа согласно таблицы 1.

По таблице отбираются типы редукторов удовлетворяющих заданному передаточному числу.

2) Расчетный крутящий момент на выходном валу редуктора

Т расч =Т треб х К реж, (2)

Т треб - требуемый крутящий момент на выходном валу, Нхм (исходные данные, либо формула 3)

К реж - коэффициент режима работы

При известной мощности двигательной установки:

Т треб = (Р треб х U х 9550 х КПД)/ n вх, (3)

Р треб - мощность двигательной установки, кВт

n вх - частота вращения входного вала редуктора (при условии что вал двигательной установки напрямую без дополнительной передачи передает вращение на входной вал редуктора), об/мин

U - передаточное число редуктора, формула 1

КПД - коэффициент полезного действия редуктора

Коэффициент режима работы определяется как произведение коэффициентов:

Для зубчатых редукторов:

К реж =К 1 х К 2 х К 3 х К ПВ х К рев (4)

Для червячных редукторов:

К реж =К 1 х К 2 х К 3 х К ПВ х К рев х К ч (5)

К 1 - коэффициент типа и характеристик двигательной установки, таблица 2

К 2 - коэффициент продолжительности работы таблица 3

К 3 - коэффициент количества пусков таблица 4

К ПВ - коэффициент продолжительности включений таблица 5

К рев - коэффициент реверсивности, при нереверсивной работе К рев =1,0 при реверсивной работе К рев =0,75

К ч - коэффициент, учитывающий расположение червячной пары в пространстве. При расположении червяка под колесом К ч = 1,0, при расположении над колесом К ч = 1,2. При расположении червяка сбоку колеса К ч = 1,1.

3) Расчетная радиальная консольная нагрузка на выходном валу редуктора

F вых.расч = F вых х К реж, (6)

F вых - радиальная консольная нагрузка, приложенная в середине посадочной части концов выходного вала (исходные данные), Н

К реж - коэффициент режима работы (формула 4,5)

3. Параметры выбираемого редуктора должны удовлетворять следующим условиям:

1) Т ном > Т расч, (7)

Т ном - номинальный крутящий момент на выходном валу редуктора, приводимый в данном каталоге в технических характеристиках для каждого редуктора, Нхм

Т расч - расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм

2) F ном > F вых.расч (8)

F ном - номинальная консольная нагрузка в середине посадочной части концов выходного вала редуктора, приводимая в технических характеристиках для каждого редуктора, Н.

F вых.расч - расчетная радиальная консольная нагрузка на выходном валу редуктора (формула 6), Н.

3) Р вх.расч < Р терм х К т, (9)

Р вх.расч - расчетная мощность электродвигателя (формула 10), кВт

Р терм - термическая мощность, значение которой приводится в технических характеристиках редуктора, кВт

К т - температурный коэффициент, значения которого приведены в таблице 6

Расчетная мощность электродвигателя определяется:

Р вх.расч =(Т вых х n вых)/(9550 х КПД), (10)

Т вых - расчетный крутящий момент на выходном валу редуктора (формула 2), Нхм

n вых - частота вращения выходного вала редуктора, об/мин

КПД - коэффициент полезного действия редуктора,

А) Для цилиндрических редукторов:

  • одноступенчатых - 0,99
  • двухступенчатых - 0,98
  • трехступенчатых - 0,97
  • четырехступенчатых - 0,95

Б) Для конических редукторов:

  • одноступенчатых - 0,98
  • двухступенчатых - 0,97

В) Для коническо-цилиндрических редукторов - как произведение значений конической и цилиндрической частей редуктора.

Г) Для червячных редукторов КПД приводиться в технических характеристиках для каждого редуктора для каждого передаточного числа.

Купить редуктор червячный, узнать стоимость редуктора, правильно подобрать необходимые компоненты и помочь с вопросами, возникающими во время эксплуатации, Вам помогут менеджеры нашей компании.

Таблица 1

Таблица 2

Ведущая машина

Генераторы, элеваторы, центробежные компрессоры, равномерно загружаемые конвейеры, смесители жидких веществ, насосы центробежные, шестеренные, винтовые, стреловые механизмы, воздуходувки, вентиляторы, фильтрующие устройства.

Водоочистные сооружения, неравномерно загружаемые конвейеры, лебедки, тросовые барабаны, ходовые, поворотные, подъемные механизмы подъемных кранов, бетономешалки, печи, трансмиссионные валы, резаки, дробилки, мельницы, оборудование для нефтяной промышленности.

Пробойные прессы, вибрационные устройства, лесопильные машины, грохот, одноцилиндровые компрессоры.

Оборудование для производства резинотехнических изделий и пластмасс, смесительные машины и оборудование для фасонного проката.

Электродвигатель,

паровая турбина

4-х, 6-ти цилиндровые двигатели внутреннего сгорания, гидравлические и пневматические двигатели

1-х, 2-х, 3-х цилиндровые двигатели внутреннего сгорания

Таблица 3

Таблица 4

Таблица 5

Таблица 6

охлаждения

Температура окружающей среды, С о

Продолжительность включения, ПВ %.

Редуктор без

постороннего

охлаждения.

Редуктор со спиралью водяного охлаждения.