Ремонт Дизайн Мебель

Независимость событий. Условная вероятность. Теорема Байеса Условная вероятность пример

Нередко в жизни мы сталкиваемся с тем, что нужно оценить шансы наступления какого-либо события. Стоит ли покупать лотерейный билет или нет, каков будет пол третьего ребенка в семье, будет ли завтра ясная погода или снова пойдет дождь - таких примеров можно привести бесчисленное множество. В самом простом случае следует разделить число благоприятных исходов на общее число событий. Если в лотерее 10 билетов выигрышных, а всего их 50, то шансы получить приз равны 10/50 = 0,2, то есть 20 против 100. А как поступать в том случае, если есть несколько событий, и они тесно связаны между собой? В этом случае нас будет интересовать уже не простая, а условная вероятность. Что это за величина и как ее можно посчитать - об этом как раз и будет рассказано в нашей статье.

Понятие

Условная вероятность - это шансы наступления определенного события при условии, что другое связанное с ним событие уже произошло. Рассмотрим простой пример с бросанием монетки. Если жеребьевки еще не было, то шансы выпадения орла или решки будут одинаковыми. Но если раз пять подряд монетка ложилась гербом вверх, то согласитесь ожидать 6-го, 7-го, а тем более 10-го повторения такого исхода будет нелогично. С каждым повторным разом выпадения орла, шансы появления решки растут и рано или поздно она-таки выпадет.

Формула условной вероятности

Давайте теперь разберемся с тем, как эта величина рассчитывается. Обозначим первое событие через В, а второе через А. Если шансы наступления В отличны от нуля, то тогда будет справедливым следующее равенство:

Р (А|В) = Р (АВ) / Р (В), где:

  • Р (А|В) - условная вероятность итога А;
  • Р (АВ) - вероятность совместного появления событий А и В;
  • Р (В) - вероятность события В.

Слегка преобразовав данное соотношение получим Р (АВ) = Р(А|В) * Р (В). А если применить то можно вывести формулу произведения и использовать ее при произвольном числе событий:

Р (А 1 , А 2 , А 3 ,…А п) = Р (А 1 |А 2 …А п)*Р(А 2 |А 3 …А п) * Р (А 3 |А 4 …А п)… Р (А п-1 |А п) * Р (А п).

Практика

Чтобы было легче разобраться с тем, как рассчитывается условная рассмотрим парочку примеров. Предположим имеется ваза, в которой находятся 8 шоколадных конфет и 7 мятных. По размерам они одинаковы и наугад последовательно вытаскиваются две из них. Какие будут шансы того, что обе из них окажутся шоколадными? Введем обозначения. Пусть итог А означает, что первая конфета шоколадная, итог В - вторая конфета шоколадная. Тогда получится следующее:

Р (А) = Р (В) = 8 / 15,

Р (А|В) = Р (В|А) = 7 / 14 = 1/2,

Р (АВ) = 8 /15 х 1/2 = 4/15 ≈ 0,27

Рассмотрим еще один случай. Предположим, есть двухдетная семья и нам известно, что, по крайней мере, один ребенок является девочкой.

Какова условная вероятность того, что мальчиков у этих родителей пока нет? Как и в предыдущем случае, начнем с обозначений. Пусть Р (В) - вероятность того, что в семье есть хотя бы одна девочка, Р (А|В) - вероятность того, что второй ребенок тоже девочка, Р (АВ) - шансы того, что в семье две девочки. Теперь произведем расчёты. Всего может быть 4 разных комбинаций пола детей и при этом лишь в одном случае (когда в семье два мальчика), девочки среди детей не будет. Поэтому вероятность Р (В) = 3/4, а Р (АВ) = 1/4. Тогда следуя нашей формуле получим:

Р (А|В) = 1/4: 3/4 = 1/3.

Интерпретировать результат можно так: если бы нам не было б известно о поле одного из детей, то шансы двух девочек были бы 25 против 100. Но поскольку мы знаем, что один ребенок девочка, вероятность того, что в семье мальчиков нет, возрастает до одной третьей.

§ 1. ОСНОВНЫЕ ПОНЯТИЯ

4. Условная вероятность. Теорема умножения вероятностей.

Во многих задачах приходится находить вероятность совмещения событий А и В , если известны вероятности событий А и В .

Рассмотрим следующий пример. Пусть брошены две монеты. Найдем вероятность появления двух гербов. Мы имеем 4 равновероятных попарно несовместных исхода, образующих полную группу:

1-я монета 2-я монета
1-й исход герб герб
2-й исход герб надпись
3-й исход надпись герб
4-й исход надпись надпись

Таким образом, P(герб,герб)=1/4 .

Пусть теперь нам стало известно, что на первой монете выпал герб. Как изменится после этого вероятность того, что герб появится на обеих монетах? Так как на первой монете выпал герб, то теперь полная группа состоит из двух равновероятных несовместных исходов:

1-я монета 2-я монета
1-й исход герб герб
2-й исход герб надпись

При этом только один из исходов благоприятствует событию (герб, герб). Поэтому при сделанных предположениях Р(герб,герб)=1/2 . Обозначим через А появление двух гербов, а через В - появление герба на первой монете. Мы видим, что вероятность события А изменилась, когда стало известно, что событие B произошло.

Новую вероятность события А , в предположении, что произошло событие B , будем обозначать P B (А) .

Таким образом, Р(A)=1/4; P B (А)=1/2

Теорема умножения. Вероятность совмещения событий А и В равна произведению вероятности одного из них на условную вероятность другого, вычисленную в предположении, что первое событие осуществилось, т. е.

P(AB)=P(A)P A (B) (4)

Доказательство. Докажем справедливость соотношения (4), опираясь на классическое определение вероятности. Пусть возможные исходы Е 1 , Е 2 , ..., Е N данного опыта образуют полную группу равновероятных попарно несовместных событий, из которых событию A благоприятствуют M исходов, и пусть из этих M исходов L исходов благоприятствуют событию B . Очевидно, что совмещению событий A и B благоприятствуют L из N возможных результатов испытания. Это дает ; ;
Таким образом,
Поменяв местами A и B , аналогично получим
Теорема умножения легко обобщается на любое, конечное число событий. Так, например, в случае трех событий A 1 , A 2 , A 3 имеем *
В общем случае

Из соотношения (6) вытекает, что из двух равенств (8) одно является следствием другого.

Пусть, например, событие A - появление герба при однократном бросании монеты, а событие B - появление карты бубновой масти при вынимании карты из колоды. Очевидно, что события A и B независимы.

В случае независимости событий A к B формула (4) примет более простой вид:

* Событие A 1 A 2 A 3 можно представить как совмещение двух событий: события C=A 1 A 2 и события A 3 .

Условной вероятностью события A при выполнении события B называется отношение Здесь предполагается, что .

В качестве разумного обоснования этого определения отметим, что при наступлении события B оно начинает играть роль достоверного события, поэтому надо потребовать, чтобы . Роль события A играет AB, поэтому должна быть пропорциональна . (Из определения следует, что коэффициент пропорциональности равен .)

Теперь введем понятие независимости событий.

Это означает: оттого что произошло событие B , вероятность события A не изменилась.

С учетом определения условной вероятности, это определение сведется к соотношению . Здесь уже нет необходимости требовать выполнения условия . Таким образом, приходим к окончательному определению.

События A и B называются независимыми, если P (AB ) = P (A )P (B ).

Последнее соотношение обычно и принимают за определение независимости двух событий.

Несколько событий называются независимыми в совокупности, если подобные соотношения выполняются для любого подмножества рассматриваемых событий. Так, например, три события A, B и C называются независимыми в совокупности, если выполняются следующие четыре соотношения:

Приведем ряд задач на условную вероятность и независимость событий и их решения.

Задача 21. Из полной колоды из 36 карт вытаскивают одну карту. Событие A – карта красная, B – карта туз. Будут ли они независимы?

Решение. Проведя вычисления согласно классическому определению вероятности, получим, что . Это означает, что события A и B независимы.

Задача 22 . Решить ту же задачу для колоды, из которой удалена пиковая дама.

Решение . . Независимости нет.

Задача 23. Двое поочередно бросают монету. Выигрывает тот, у которого первым выпадет герб. Найти вероятности выигрыша для обоих игроков.

Решение. Можно считать, что элементарные события – это конечные последовательности вида (0, 0, 1,…, 0, 1). Для последовательности длины соответствующее элементарное событие имеет вероятность Игрок, начинающий бросать монету первым, выигрывает, если реализуется элементарное событие , состоящее из нечетного числа нулей и единиц. Поэтому вероятность его выигрыша равна

Выигрыш второго игрока соответствует четному числу нулей и единиц. Он равен

Из решения следует, что игра заканчивается за конечное время с вероятностью 1 (так как ).

Задача 24. Для того чтобы разрушить мост, нужно попадание не менее 2 бомб. Сбросили 3 бомбы. Вероятности попадания бомб равны соответственно 0, 1; 0, 3; 0, 4. Найти вероятность разрушения моста.

Решение. Пусть события A, B, C состоят в попадании 1-й, 2-й, 3-й бомбы соответственно. Тогда разрушение моста происходит только при реализации события В силу того что слагаемые в этой формуле попарно несовместны, а сомножители в слагаемых независимы, искомая вероятность равна

0,1∙0,3∙0,4 + 0,1∙0,3∙0,6 + 0,1∙0,7∙0,4 + 0,9∙0,3∙0,4 = 0,166.

Задача 25. К одному и тому же причалу должны пришвартоваться два грузовых судна. Известно, что каждое из них может с равной вероятностью подойти в любой момент фиксированных суток и должно разгружаться 8 ч. Найти вероятность того, что судну, пришедшему вторым, не придется дожидаться, пока закончит разгрузку первое судно.

Решение. Будем время измерять в сутках и долях суток. Тогдаэлементарные события – это пары чисел , заполняющие единичный квадрат, где x – время прихода первого судна, y – время прихода второго судна. Все точки квадрата равновероятны. Это означает, что вероятность любого события (т. е. множества из единичного квадрата) равна площади области, соответствующей этому событию. Событие A состоит из точек единичного квадрата, для которых выполняется неравенство . Это неравенство соответствует тому, что судно, пришедшее первым, успеет разгрузиться к моменту прихода второго судна. Множество этих точек образует два прямоугольных равнобедренных треугольника со стороной 2/3. Суммарная площадь этих треугольников равна 4/9. Таким образом, .

Задача 26. На экзамене по теории вероятностей было 34билета. Студент дважды извлекает по одному билету из предложенных билетов (не возвращая их). Студент подготовился лишь по 30-ти билетам? Какова вероятность того, что он сдаст экзамен, выбрав в первый раз «неудачный » билет?

Решение. Случайный выбор состоит в том, что два раза подряд извлекают по одному билету, причем вытянутый в первый раз билет назад не возвращается. Пусть событие В состоит в том, что первым вынут «неудачный» билет, а событие А состоит в том, что вторым вынут «удачный » билет. Очевидно, что события А и В зависимы, так как извлеченный в первый раз билет не возвращается в число всех билетов. Требуется найти вероятность события АВ .

По формуле условной вероятности ; ; , поэтому .

Как отмечалось в начале нашего курса, мы подразумеваем, что эксперимент проводится при некотором фиксированном комплексе условий К. Если эти условия изменились, то изменяется и вероятность событий, относящихся к этому эксперименту. Такое изменение всегда можно понимать как появление некоторого события (кроме исходного комплекса условий К). Чтобы понять, как определить в этом случае новую (условную) вероятность, рассмотрим соответствующие частоты. Пусть эксперимент проведен N раз, событие В произошло N(B) раз, а события А и В вместе N(AB) раз. Тогда ’’условная” частота события А среди тех экспериментов, где произошло событие В, равна

Имея в виду, что вероятность наследует свойства частот, можно дать следующее

Определение 1. Условной вероятностью события А при условии, что произошло событие , называется число

Иногда применяют и другое обозначение

Пример 1 . Симметричную монету подбрасывают два раза. Известно, что выпал один герб (событие В). Найти вероятность события А, состоящего в том, что герб выпал при первом бросании.

Легко вычислить, что , а . Отсюда следует, что

Нетрудно проверить, что при фиксированном В условная вероятность обладает следующими свойствами:

Таким образом, условная вероятность обладает всеми основными свойствами вероятности.

Очень важную роль играет следующая теорема.

Теорема умножения. Пусть А и В - два события и Тогда

Ее доказательство следует из определения условной вероятности. Польза этой теоремы состоит в том, что иногда мы можем вычислить условную вероятность непосредственно и затем использовать это для вычисления

Пример 2. В урне 5 шаров - 3 белых и 2 черных. Без возвращения выбираем два шара. Найти вероятность того, что оба шара белые.

Пусть событие состоит в том, что первый шар белый, а событие - второй шар белый. Легко вычислить, что После того, как мы вынули один шар и знаем, что он белый, мы имеем 4 шара и среди них 2 белых. Тогда . По теореме умножения

Теорему умножения легко распространить на любое конечное число событий.

Следствие 1. Пусть - случайные события, тогда

Если появление события В не меняет вероятности события А, т. е., то такие события естественно назвать независимыми. В этом случае по теореме умножения мы получаем

Последнее соотношение симметрично относительно А и В и имеет смысл при . Поэтому мы возьмем его в качестве определения.

Определение 2. События А и В называются независимыми, если

Пример 3 . Подбрасывают две симметричных монеты. Событие А состоит в том, что на первой монете выпал герб, а событие В - на второй монете выпал герб.

Интуитивно ясно, что такие события должны быть независимыми. Действительно,,,

Таким образом А и В - независимы в смысле определения. Менее очевидно, что независимы события А и С, где С означает, что выпал только один герб (доказать!).

Сложнее определяется независимость более двух событий.

Определение 3 . События называем независимыми в совокупности, если для любого и любых событий из рассматриваемых справедливо

Покажем на примерах, что попарной независимости и выполнения последнего равенства для перечня всех событий недостаточно для независимости в совокупности.

Пример 4. Правильный тетраэдр окрашен тремя цветами: одна грань - в синий цвет, вторая - в красный, третья - в зеленый, а на четвертой присутствуют все три цвета. Этот тетраэдр подбрасывают и отмечают, какой гранью он выпал.

Пусть означает появление синего цвета, - красного, - зеленого. Тогда,,,

Отсюда мы получаем, что. Аналогично для других пар. Таким образом, мы имеем попарную независимость. Но

Задача 1. Придумать пример эксперимента и трех событий ,,, для которых , но которые не являются попарно независимыми.

Можно дать следующее более общее

Определение 4. Пусть - некоторые классы событий.

Они называются независимыми, если любые события - независимы в совокупности.

Типичная ситуация описана в следующем примере.

Пример 5 . Симметричный игральный кубик подбрасывают два раза. обозначает набор событий, связанных с результатом первого бросания. определяется аналогично для результата второго бросания. Тогда и -независимы.

Во многих задачах является полезным следующий результат.

Предложение 1 . Если события А и В независимы, то независимы и любые два из следующих: .

Доказательство. Докажем независимость .

Независимость остальных пар событий предлагается доказать самостоятельно.

Во многих ситуациях мы встречаемся с такими экспериментами, которые можно разложить на два (или более) этапов. На первом этапе мы имеем несколько вариантов, а спрашивается что- либо о том, что произошло в конце - на втором этапе. В этом случае чрезвычайно полезен приводимый ниже результат. Начнем со следующего определения.

Определение 5. События образуют полную группу событий (разбиение пространства), если

Теорема 1 . Пусть события образуют полную группу событий, для всех и - произвольное событие. Тогда - формула полной вероятности.

Доказательство. Так как события образуют полную группу, то мы имеем

Отсюда получаем

Где мы использовали теорему умножения.

Пример 6 . На некоторой фабрике 30% продукции производится машиной А, 25% продукции - машиной В, а остальная продукция - машиной С. У машины А в брак идет 1% производимой ей продукции, у машины - 1,2% , а у машины С - 2%. Из всей произведенной продукции случайно выбрано одно изделие. Какова вероятность того, что оно бракованное?

Пусть обозначает событие, состоящее в том, что выбранная деталь изготовлена на машине А, - на машине В, - на машине С. Обозначим через D событие, состоящее в том, что выбранная деталь бракованная. События образуют полную группу событий. По условию задачи

Событие. Пространство элементарных событий. Достоверное событие, невозможное событие. Совместные, несовместные события. Равновозможные события. Полная группа событий. Операции над событиями.

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события.

Под элементарными событиями , связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий.

Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями.

Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E).

Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное.

Два события называются совместными (совместимыми) в данном опыте, если появление одного из них не исключает появления другого.

Два события называются несовместными (несовместимыми) в данном опыте, если они не могут произойти вместе при одном и том же испытании. Несколько событий называются несовместными, если они попарно несовместны.

Начало формы

Конец формы

Событие - это явление, о котором можно сказать, что оно происходит или не происходит , в зависимости от природы самого события. События обозначаются большими буквами латинского алфавита A, B, C,... Любое событие происходит вследствие испытания . Например, подбрасываем монету - испытание, появление герба - событие; достаем лампу из коробки - испытание, она бракованная - событие; вынимаем наугад шарик из ящика - испытание, шарик оказался черного цвета - событие. Случайным событием называется событие, которое может произойти или не произойти во время данного испытания. Например, вынимая наугад одну карту из колоды, вы взяли туз; стреляя, стрелок попадает в цель. Теория вероятности изучает только массовые случайные события. Достоверным событием называется событие, которое вследствие данного испытания обязательно произойдет; (обозначается E). Невозможным событием называется такое событие, которое вследствие данного испытания не может произойти ; (обозначается U). Например, появление одного из шести очков во время одного броска игрального кубика - достоверное событие, а появление 8 очков - невозможное. Равновозможные события - это такие события, каждое из которых не имеет никаких преимуществ в появлении чаще другого во время многочисленных испытаний, которые проводятся с одинаковыми условиями. Попарно несовместимые события - это события, два из которых не могут произойти вместе. Вероятность случайного события - это отношение числа событий, которые благоприятствуют этому событию, к общему числу всех равновозможных несовместимых событий: P(A) = где A - событие; P(A) - вероятность события; N - общее число равновозможных и несовместимых событий; N(A) - число событий, которые благоприятствуют событию A. Это - классическое определение вероятности случайного события. Классическое определение вероятности имеет место для испытаний с конечным числом равновозможных результатов испытания. Пусть сделано n выстрелов по мишени, из которых оказалось m попаданий. Отношение W(A) = называется относительной статистической частотой наступления события A. Следовательно, W(A) - статистическая частота попадания.

При проведении серии выстрелов (табл.1) статистическая частота будет колебаться около определенного постоянного числа. Это число целесообразно принять за оценку вероятности попадания.

Вероятностью события A называется то неизвестное число P, около которого собираются значения статистических частот наступления события A при возрастании числа испытаний.

Это - статистическое обозначение вероятности случайного события.

Операции над событиями
Под элементарными событиями, связанными с определенным испытанием, понимают все неразложимые результаты этого испытания. Каждое событие, которое может наступить в результате этого испытания, можно рассматривать как некоторое множество элементарных событий. Пространством элементарных событий называется произвольное множество (конечное или бесконечное). Его элементы - точки (элементарные события). Подмножества пространства элементарных событий называются событиями. Все известные отношения и операции над множествами переносятся на события. Говорят, что событие A является частным случаем события B (или B является результатом A), если множество A является подмножеством B. Обозначают это отношение так же, как для множеств: A ⊂ B или B ⊃ A. Таким образом, отношение A ⊂ B означает, что все элементарные события, входящие в A, входят также в B, то есть при наступлении события A наступает также событие B. При этом, если A ⊂ B и B ⊂ A, то A = B. Событие A, которое происходит тогда и только тогда, когда событие A не происходит, называется противоположным событию A. Поскольку в каждом испытании происходит одно и только одно из событий - A или A, то P(A) + P(A) = 1, или P(A) = 1 − P(A). Объединением или суммой событий A и B называется событие C, которое происходит тогда и только тогда, когда или происходит событие A, или происходит событие B, или происходят A и B одновременно. Это обозначается C = A ∪ B или C = A + B. Объединением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит хотя бы одно из данных событий. Обозначается объединение событий A 1 ∪ A 2 ∪ ... ∪ A n , или A k , или A 1 + A 2 + ... + A n . Пересечением или произведением событий A и B называется событие D, которое происходит тогда и только тогда, когда события A и B происходят одновременно, и обозначается D = A ∩ B или D = A × B. Совмещением или произведением событий A 1 , A 2 , ... A n называется событие, которое происходит тогда и только тогда, когда происходит и событие A 1 , и событие A 2 , и т.д., и событие A n . Обозначается совмещение так: A 1 ∩ A 2 ∩ ... ∩ A n или A k , или A 1 × A 2 × ... × A n .

Тема № 2 . Аксиоматическое определение вероятности. Классическое, статистическое, геометрическое определение вероятности события. Свойства вероятности. Теоремы сложения и умножения вероятностей. Независимые события. Условная вероятность. Вероятность наступления хотя бы одного из событий. Формула полной вероятности. Формула Байеса

Численная мера степени объективной возможности наступления события называется вероятностью события. Это определение, качественно отражающее понятие вероятности события, не является математическим. Чтобы оно стало таким, необходимо определить его качественно.

Согласно классическому определению вероятность события А равна отношению числа случаев, благоприятствующих ему, к общему числу случаев, то есть:

Где P(A) – вероятность события А.

Число случаев благоприятствующих событию А

Общее число случаев.

Статистическое определение вероятности:

Статистической вероятностью события А называется относительная частота появления этого события в произведённых испытаниях, то есть:

Где - статистическая вероятность события А.

Относительная частота(частость) события А.

Число испытаний, в которых появилось события A

Общее число испытаний.

В отличие от «математической» вероятности , рассматриваемой в классическом определении, статистическая вероятность является характеристикой опытной, экспериментальной.

Если есть доля случаев, благоприятствующих событию А, которая определяется непосредственно, без каких-либо испытаний, то есть доля тех фактически произведённых испытаний, в которых событие А появилось.

Геометрическое определение вероятности:

Геометрической вероятностью события А называется отношение меры области благоприятствующей появлению события А, к мере всех области, то есть:

В одномерном случае:


Следует оценить вероятность попадания точки на CD/

Оказывается эта вероятность не зависит от места нахождения CD на отрезке АВ, а зависит лишь от его длины.


Вероятность попадания точки не зависит ни от форм, ни от месте нахождения В на А, а зависит лишь от площади данного сегмента.

Условная вероятность

Вероятность называется условной , если она вычисляется при определённых условиях и обозначается:

Это вероятность события А. Вычисляется при условии, что событие В уже произошло.

Пример. Производим испытание, извлекаем две карты из колоды: Первая вероятность является безусловной.

Вычисляем вероятность извлечения туза из колоды:

Вычисляем появление 2-тузув из колоды:

А*В – совместное появление событий

теорема умножения вероятностей

Следствие:

Теорема умножения для совместного появления событий имеет вид:

То есть каждая последующая вероятность вычисляется с тем учётом, что все предыдущие условия уже произошли.

Независимость события:

Независимыми называются 2 события, если появление одного не противоречит появлению другого.

Например, если тузы из колоды извлекаются повторно, тогда они между собой независимы. Повторно, то есть карту посмотрели и вернули обратно в колоду.

Совместные и несовместные события:

Совместными называются 2 события, если появление одного из них не противоречит появлению другого.

Теорема сложения вероятностей совместных событий:

Вероятность появления одного из двух совместных событий равна сумме вероятностей этих событий без их совместного появления.

Для трёх совместных событий:

Несовместными называются события, если никакие два из них не могут появиться одновременно в результате однократного испытания случайного эксперимента.

Теорема: Вероятность появления одного из двух несовместных событий равна сумме вероятностей этих событий.

Вероятность суммы событий:

Теорема сложения вероятностей:

Вероятность суммы конечного числа несовместных событий равна сумме вероятностей этих событий:

Следствие 1:

Сумма вероятностей событий, образующих полную группу равна единице:

Следствие 2:

Замечание: Следует подчеркнуть, что рассмотренная теорема сложения применима только для несовместных событий.

Вероятность противоположных событий:

Противоположными называются два единственно возможных события, образующих полную группу. Одно из двух противоположных событий обозначено через А , другое – через .

Пример: Попадание и промах при выстреле по цели – противоположные события. Если A – попадание, то – промах.

Теорема: Сумма вероятностей противоположных событий равна единице:

Замечание 1: Если вероятность одного из двух противоположных событий обозначена через p, то вероятность другого события обозначают через q Таким образом, в силу предыдущей теоремы:

Замечание 2: При решении задач на отыскание вероятности события A часто выгодно сначала вычислить вероятность события , а затем найти искомую вероятность по формуле:

Вероятность появления хотя бы одного события:

Допустим, что в результате эксперимента может появиться одно, какая-то часть или ни одно событие.

Теорема: Вероятность появления хотя бы одного события из совокупности независимых событий равна разности между единицей и их вероятностью не появления событий .