Ремонт Дизайн Мебель

Особенности устройства колпачковой колонны. Колонна ректификационная с колпачковыми тарелками Тарелки ректификационных колонн схемы рисунки

Изобретение относится к массообменному оборудованию в области переработки углеводородного сырья, химических и пищевых продуктов, в частности к устройствам для ректификации, абсорбции нефтепродуктов, химических и пищевых продуктов путем разделения продуктов по температурам кипения в процессе массо- и теплообмена между жидкостью и паром (газом), и может найти применение в нефтеперерабатывающей, химической, нефтехимической, газовой, пищевой промышленности. Колонна ректификационная включает корпус с технологическими штуцерами, тарелки с паровыми и переливными патрубками, а также регулируемые по высоте барботажные колпачки. Верхний конец каждого переливного патрубка закреплен в тарелке с возможностью осевого перемещения патрубка относительно последней, а его нижний конец снабжен тарельчатым перфорированным диском, а также стаканом, концентричным переливному патрубку и образующим с ним гидрозатвор. Технический результат: повышение качества и производительности колонны по целевым продуктам, повышение эффективности работы ректификационной колонны. 2 ил.

Изобретение относится к массообменному оборудованию в области переработки углеводородного сырья, химических и пищевых продуктов, в частности к устройствам для ректификации, абсорбции нефтепродуктов, химических и пищевых продуктов путем разделения их по температурам кипения в процессе массообмена между жидкостью и паром, и может найти применение в нефтеперерабатывающей, химической, нефтехимической, газовой, пищевой промышленности.

Известна ректификационная колонна для разделения трехкомпонентной смеси (патент 2234356), содержащая вертикальный корпус с тарелками и продольную вертикальную перегородку, пересекающую часть тарелок и разделяющую корпус колонны на вертикальные секторы. Колонна содержит регулятор потоков флегмы и регулятор потоков паровой фазы.

Известен аппарат колонный с колпачковыми тарелками (патент 2214852). В этом колонном аппарате с колпачковыми тарелками корпус выполнен из царг, между их основаниями зажаты опорные кольца, на которые опираются тарелки с эластичными уплотнениями. Центральные опоры снабжены фиксаторами. Основание тарелки куполообразное. Все элементы колонны выполнены из фторопласта и предназначены для обработки коррозионно-активных материалов.

Недостаток обеих перечисленных колонн заключается в том, что в них в силу жесткого закрепления всех элементов колпачковой тарелки не представляется возможным изменять такие технологические параметры, как, например, толщину слоя жидкости на тарелке и перепад уровней жидкости под колпачками относительно уровня ее на тарелке, что не позволяет изменять режим работы колонны по высоте в зависимости от изменяющихся свойств отрабатываемых продуктов, т.е. влиять на процесс тепло- и массообмена в колонне.

Известна также колонна ректификационная с колпачковыми тарелками, например, описанная в книге «Процессы и аппараты», Д.А.Баранов, A.M. Кутепов, М., Академия, 2005, с.182, 183, в которой частично устранен недостаток упомянутых выше колонн по патентам, так, по крайней мере, колпачки закреплены с возможностью регулирования их положения по высоте.

Указанная колонна ректификационная с колпачковыми тарелками, как наиболее близкая по технической сущности предлагаемому устройству, принята в качестве прототипа.

Однако прототип не лишен характерного для известных колонн недостатков, а именно нет возможности регулирования толщины слоя жидкости на тарелке, а также нет возможности развивать поверхность межфазового контакта, что в значительной степени определяет эффективность процесса тепло- и массообмена, т.е. эффективность работы колонны в целом.

Целью предлагаемого изобретения является исключение перечисленных недостатков и повышение эффективности работы колонны.

По существу задача решается за счет того, что верхний конец каждого переливного патрубка закреплен в тарелке с возможностью осевого перемещения патрубка относительно последней, и его нижний конец снабжен тарельчатым перфорированным диском, а также стаканом, концентричным переливному патрубку и образующим с ним гидрозатвор.

В результате такого технического решения парожидкостная смесь проходит паровой патрубок и колпачок, барботируя через щели колпачка и контактируя с жидкостью на тарелке. Парогазовая смесь уходит на вышележащую тарелку, а избыточная жидкая (тяжелая) фракция через переливной патрубок сливается в стакан гидрозатвора, откуда попадает на тарельчатый перфорированный диск. Часть жидкости переливается через бортик диска, образуя кольцевую пленку. Другая часть жидкости в форме капель и струй проходит через перфорацию в диске и сливается на нижележащую тарелку. Легко испаряющая жидкость, находящаяся на тарелке в пленке, каплях, струях, испаряется и через паровые патрубки поступает на вышележащую тарелку. Учитывая изменение температуры, вязкости жидкости, состава и агрегатного состояния среды по высоте колонны, можно отрегулировать соотношение и высоту (зазоры) между паровыми патрубками и колпачками, между переливными патрубками и стаканами гидрозатворов с тарельчатыми дисками, а также с помощью переливных патрубков изменить высоту (и, соответственно, сопротивление барботажу) жидкости на тарелке и живое сечение для борботажа паров через щели колпачков.

Это позволяет оптимизировать процесс разделения перерабатываемого продукта на заданные фракции.

На фиг.1 - схематично изображен продольный разрез колонны.

На фиг.2 - вид А, на котором в увеличенном масштабе показаны тарелки с паровыми и переливными патрубками, кронштейнами с фиксаторами и регулировочными шпильками, паровыми копачками, гидрозатворами с тарельчатыми дисками.

Предлагаемая ректификационная колонна состоит из корпуса 1, штуцера 2 для входа парожидкостной смеси, штуцера 3 для выхода жидкости (тяжелой фракции) и штуцера 4 - для выхода паров (легкой фракции). Кроме того, колонна содержит тарелки 5 с паровыми патрубками 6 и переливными патрубками 7, а также колпачки 8 и стаканы гидрозатворов 9, кронштейны 10 с фиксаторами 11, шпильками 12, поперечными планками 13 и тарельчатыми перфорированными дисками 14.

Работает предлагаемая колонна следующим образом. Исходная парожидкостная смесь подается в колонну через штуцер 2. Пары через паровые патрубки 6 поступают в полость колпачков 8, вытесняют из них жидкость через щели колпачков 8, после чего паровая смесь начинает барботировать в слой жидкости за пределами колпачков 8, и более легкая парогазовая смесь поступает на вышележащую тарелку. Тяжелая фракция конденсируется в этой жидкости на тарелке, через переливные патрубки 7 поступает в стакан гидрозатвора 9, переливается через края стакана 9 и попадает на тарельчатые перфорированные диски 14. Далее жидкость стекает с этих дисков через бортики дисков в виде пленки, а также через перфорацию дисков в виде капель и струй.

Оснащение нижних концов переливных патрубков 7 тарельчатыми переливными дисками 14 обеспечило значительное увеличение поверхности за счет истечения жидкости с этих дисков в виде пленки, капель и струй, что в свою очередь повысило эффективность процесса тепло- и массообменника в колонне в целом.

На случай забивания паровых колпачков и переливных патрубков предусмотрена возможность их демонтажа и чистки от загрязнений и последующего монтажа через люки в корпусе колонны, что значительно сокращает время и трудозатраты на чистку и техническое обслуживание колонны.

Таким образом, изменение высоты переливного патрубка (и слоя жидкости) на тарелке, в сочетании с тарельчатым перфорированным диском на переливном патрубке, позволило оптимизировать уровень жидкости на тарелке и значительно увеличить поверхность межфазного контакта на каждой тарелке, совокупную высоту столба жидкости (сопротивление) в колонне, режим работы колонны по высоте, поверхность тепло- и массообмена в зависимости от изменяющихся свойств перерабатываемых продуктов (температуры кипения, вязкости жидкости, состава смеси).

При этом обеспечивается возможность разделения продуктов на более четкие фракции и, соответственно, повышения качества целевых продуктов. Изложенные выше преимущества приводят к существенному повышению эффективности работы колонны.

Колонна ректификационная, включающая корпус с технологическими штуцерами, тарелки с паровыми и переливными патрубками, а также регулируемые по высоте барботажные колпачки, отличающаяся тем, что верхний конец каждого переливного патрубка закреплен в тарелке с возможностью осевого перемещения патрубка относительно последней, а его нижний конец снабжен тарельчатым перфорированным диском, а также стаканом, концентричным переливному патрубку и образующим с ним гидрозатвор.

Похожие патенты:

Изобретение относится к конструкции контактных устройств тарельчатых абсорбционных, ректификационных и других тепломассообменных аппаратов, оснащенных переливными устройствами, и может быть использовано в химической, газовой, нефтехимической, пищевой, энергетической, горнорудной и смежных отраслях промышленности.

Изобретение относится к массообменному оборудованию в области переработки углеводородного сырья, химических и пищевых продуктов, в частности к устройствам для ректификации, абсорбции нефтепродуктов, химических и пищевых продуктов путем разделения продуктов по температурам кипения в процессе массообмена между жидкостью и паром (газом), и может найти применение в нефтеперерабатывающей, химической, нефтехимической, газовой, пищевой промышленности. Колонна ректификационная включает корпус с технологическими штуцерами, тарелки с паровыми патрубками и переливными устройствами, а также колпачки с вертикальными прорезями. Горизонтальные кромки прорезей колпачков снабжены лопатками, расположенными с наружной стороны колпачков радиально и в горизонтальной плоскости. Технический результат - повышение эффективности процесса массообмена в ректификационной колонне в целом. 3 ил.

Изобретение относится к улучшенному способу получения пара-трет-бутилфенола путем алкилирования фенола изобутиленом на гетерогенном сульфокатионитном катализаторе, разделения реакционной массы, содержащей фенол, пара-трет-бутилфенол, орто-трет-бутилфенол, 2,4-ди-трет-бутилфенол, высококипящие примеси, методом вакуумной ректификации в двух колоннах с отбором фенола и орто-трет-бутилфенола в виде дистиллята. При этом реакционную массу подвергают роторно-пленочному испарению для отделения от нее высококипящих примесей, выделение товарного продукта осуществляют в дополнительной ректификационной колонне в виде дистиллята, на вакуумной линии осуществляют абсорбционное улавливание несконденсировавшихся паров пара-трет-бутилфенола, кубовый остаток колонны выделения товарного продукта, содержащий 2,4-ди-трет-бутилфенол и пара-трет-бутилфенол, рециркулируют на стадию алкилирования фенола изобутиленом. Изобретение также относится к устройству для осуществления способа получения пара-трет-бутилфенола. Способ позволяет получать продукт с высокой степенью чистоты и высоким выходом. 2 н.п. ф-лы, 1 ил.

Изобретение относится к области технологии радионуклидов и может быть использовано как в технологических процессах, использующих молекулярный тритий и тритийсодержащие соединения, так и для глубокой очистки газовых сбросов от трития предприятий атомной отрасли при решении экологических задач. Способ очистки газов от паров тритированной воды заключается в том, что газовый поток подают снизу противоточной колонны фазового изотопного обмена, заполненной спирально призматической насадкой из нержавеющей стали, а сверху колонны подают поток природной воды, причем процесс проводят при комнатной температуре, а высоту колонны выбирают исходя из требуемой степени детритизации газа. Технический результат изобретения заключается в увеличении степени очистки и переходе на непрерывный режим процесса детритизации газов. 2 ил., 1 табл., 2 пр.

Изобретение относится к устройству для осуществления термодеструктивных процессов переработки тяжелых нефтяных остатков, которое может быть использовано в нефтеперерабатывающей, нефтехимической и газовой отраслях промышленности. Устройство, представляющее собой реакционно-ректификационный аппарат, включает корпус, камеру сгорания, штуцера для подвода сырья, топлива, окисляющего газа, вывода продуктов реакции и газов сгорания. При этом камера сгорания расположена в нижней части аппарата и соединена с корпусом аппарата штуцером герметично; в нижней части камеры сгорания размещен штуцер для подачи воды, а штуцер ввода сырья размещен выше штуцера ввода продуктов сгорания и между ними расположена секция смешения; выше ввода сырья расположены по крайней мере еще две секции: разделения и конденсации паров. Техническим результатом является снижение энергопотребления, металлоемкости и габаритов оборудования, повышение эксплуатационной надежности и безопасности за счет того, что исключается возможность закоксовывания и прогара труб. 5 ил.

Изобретение может быть использовано в коксохимической промышленности. Ректификационная колонна для установки замедленного коксования включает укрепляющую часть (1) с ректификационными тарелками (26) и отгонную часть (2), в которой размещены струйная промывочная камера (27) и наклонная перегородка (33) с карманом (34), оснащенным штуцером (10) для отвода сверхтяжелого газойля коксования, расположенная между штуцерами ввода исходного сырья (6) и ввода паров из камеры коксования (7, 8). Между струйной промывочной камерой (27) и наклонной перегородкой (33) с карманом (34) установлена промежуточная перегородка (28), снабженная патрубками (29) с отбойными пластинами (30) и карманом (31) для отвода загрязненного после промывки тяжелого газойля. Изобретение позволяет снизить энергоемкость процесса замедленного коксования в 1,1-1,3 раза. 1 ил.

Изобретение относится к химической, нефтехимической, металлургической, энергетической, фармацевтической и пищевой промышленности. Тепломассообменный аппарат содержит корпус (1) с патрубками для подвода и отвода жидкости и газа, расположенный в корпусе на валу вращающийся барабан (3) с радиальными лопатками (6), расположенными на внутренней поверхности по всей длине барабана. Барабан (3) имеет сплошную боковую стенку и снабжен торцевыми крышками, в которых вокруг вала выполнены радиальные отверстия для прохождения газа и жидкости. Радиальные лопатки изготовлены из листового материала и представляют собой загнутые на две разные по ширине части листа, а отверстия в торцевых крышках барабана выполнены так, чтобы они не перекрывали торцевую часть лопаток. Изобретение позволяет уменьшить капельный унос жидкости и, как следствие, повысить эффективность тепломассообменных процессов в системе газ-жидкость. 2 з.п. ф-лы, 4 ил.

Изобретение относится к ректификационному устройству для очистки воды от примесей в виде молекул воды, содержащих в своем составе тяжелые изотопы водорода и кислорода. Устройство содержит ректификационную колонну, работающую под вакуумом, испаритель, конденсатор и тепловой насос. При этом ректификационная колонна состоит из двух коаксиальных труб с диаметрами D1 и D2, причем D1>D2 и (D1-D2)/2<300 мм, со слоем насыпной насадки, расположенным в зазоре между ними, при этом распределитель жидкости вверху колонны имеет не менее 800 точек орошения па квадратный метр площади сечения насадочной части колонны. Изобретение обеспечивает повышение производительности и снижение энергетических затрат. 4 з.п. ф-лы, 5 ил., 4 табл., 3 пр.

Изобретение относится к массообменному оборудованию в области переработки углеводородного сырья, химических и пищевых продуктов, в частности к устройствам для ректификации, абсорбции нефтепродуктов, химических и пищевых продуктов путем разделения продуктов по температурам кипения в процессе массо- и теплообмена между жидкостью и паром, и может найти применение в нефтеперерабатывающей, химической, нефтехимической, газовой, пищевой промышленности

Многоколпачковая тарелка с круглыми колпаками - наиболее распространенная (рис. 7.68). Она имеет металлическое полотно с отверстиями для паровых патрубков, которые прикреплены к полотну.

Над патрубками устанавливаются колпачки, чаще всего диаметром 60 и 80мм. Колпачки имеют прорези высотой 15, 20 или 30мм Для создания необходимого уровня жидкости используют переливные трубки, которые располагаются по диаметру, или сегментные переливные перегородки. Прорези колпачков должны быть погружены в жидкость, потому переливные трубки и перегородки выступают над тарелкой на определенную высоту. Пар поступает через паровой патрубок, проходит через прорези и барботирует сквозь слой жидкости. При взаимодействии пара и жидкости образуется мелкопористая пена и проходит обмен компонентами между фазами. На тарелке имеет место перекрестное течение жидкости и пара. Эти тарелки принадлежат к группе барботажных контактных устройств. Жидкость перетекает вниз из тарелки на тарелку через переливные устройства (стаканы). Навстречу снизу вверх проходит пар.

Колпачковые контактные устройства имеют широкий интервал устойчивой работы, относительно высокий коэффициент полезного действия (0,5-0,7), но имеют большое гидравлическое сопротивление и могут использоваться для переработки чистой жидкости. Недостатком также является значительная металлоемкость и сложность изготовления.

Одноколпачковая тарелка работает аналогично многоколпачковой. Одноколпачковые тарелки хорошо работают в колоннах малого диаметра. С увеличением диаметра эффективность их работы уменьшается.

Многоколпачковые тарелки используются в колоннах брагоректификационных установок: эпюрационных, спиртовых, сивушных, конечной очистки. Используют их также в концентрационной части брагоперегонных установок для получения спирта-сырца. В современных установках эпюрационные колонны имеют 39-40 многоколпачковых тарелок, а спиртовые 71 - 74.

Бражные колонны брагоректификационной установки и истощающая часть колонны брагоперегонной установки оснащены одноколпачковыми тарелками. Они могут использоваться для перегонки бражки и других жидкостей, которые содержат суспендированные твердые частицы.

Сетчатая тарелка является одним из самых простых тарельчатых контактных устройств (рис. 7.69.). Это перфорированный металлический диск с отверстиями диаметром 2-12 мм, которые размещаются на плоскости тарелки по вершинам равносторонних треугольников. Тарелка укрепляется горизонтально в колонне. Для поддержания определенного уровня жидкости в колоннах малого диаметра применяются переливные трубки, нижние концы которых погружены в сплошные стаканы. В колоннах большего диаметра используют сегментные переливные перегородки. Пар, который поднимается в колонне, проходит сквозь отверстия тарелки и распределяется в слое жидкости в виде пузырьков и струек. При этом происходит массообмен между фазами. Сетчатые тарелки имеют большее свободное сечение (плоскость отверстий), чем колпачковые, потому производительность их по пару на 30-40 % превышает колпачковые. Уровень жидкости на тарелке поддерживается определенным давлением в колонне. При уменьшении давления жидкость может протечь через отверстия по всей плоскости тарелки или отдельных ее частях, что ухудшает массообмен. Это может произойти также при неточном установлении (перекосе) тарелок.

Сетчатые тарелки эффективны, просты в изготовлении, имеют малую металлоемкость, но нуждаются в точном горизонтальном монтаже.

Сетчатые тарелки применяются в бражных колоннах большого диаметра (> 1400 мм).

Провальные контактные тарелки .В этих тарелках пар и жидкость проходят через одни и те же отверстия, потому они имеют больше, чем сетчатые, свободное сечение (12-20 %). Эти конструкции не нуждаются в переливных устройствах и имеют большую рабочую площадь.

Решетчатые провальные тарелки изготовляются из стальных или медных листов толщиной 3-5 мм. Щели штампуются или фрезеруются шириной 2-6 мм и длиной 60-200 мм. На соседних тарелках щели располагаются взаимно перпендикулярно. Такие тарелки просты по конструкции, их пропускная способность по жидкости больше чем в сетчатых, но они имеют узкий диапазон стабильной работы. Решетчатые провальные тарелки рекомендуется использовать в бражных колоннах.

Чешуеобразная тарелка (рис. 7.70) изготавливается из металлического листа, в котором в шахматном порядке штампуется арочная чешуя. Угол наклона составляет 15-20°. Изменение свободного сечения тарелки (рекомендуется 8-15 %) достигается изменением количества чешуек. Тарелка имеет утопленные приемные и сливные сегменты. К сливному сегменту прикреплена переливная труба. Поток пара, который перемещается в колонне, изменяет направление движения при прохождении через чешую, прорези которой направлены в сторону движения жидкости. Направленный паровой поток увеличивает скорость жидкости, которая перемещается с подъемом в сторону слива. В рабочем струйном режиме пар интенсивно турбулизирует жидкостной поток, значительная часть парожидкостной смеси поднимается над тарелкой и двигается в межтарельчатом пространстве. Чешуеобразные тарелки работают при высоких скоростях пара и незначительном брызговыносе, имеют высокую эффективность (КПД 0.5-0.7) .

Этот тип тарелок рекомендуется применять в бражных колоннах диаметром больше 1,4 м при перегонке бражки из измельченного зерно-картофельного сырья. Бражная колонна с чешуеобразными тарелками характеризуется широким диапазоном стабильной работы, большей на 20-40 % производительностью сравнительно с типичными бражными колоннами, способствует улучшению качества спирта.

Клапанные тарелки . Металлическое плоское полотно тарелки имеет круглые или квадратные отверстия, которые закрыты клапанами. Соответственно изготовляют дисковые и прямоугольные клапаны (рис. 7.71). При перемещении в колонне пара снизу вверх клапаны немного поднимаются, пар проходит сквозь прорез, который образовался, и контактирует с жидкостью, которая находится на тарелке. С увеличением количества пара клапан поднимается выше. Проходное сечение увеличивается, а скорость движения пара не меняется. Высота подъема клапана составляет 6-8 мм и ограничивается кронштейном-ограничителем. Клапанные тарелки оснащены также переливными устройствами и могут работать в режимах с перекрестным и прямоточным взаимодействием фаз. В последнем случае клапаны имеют ограничители разной длины.

На современном этапе клапанными тарелками оснащают бражные и эпюрационные колонны. В ректификационных установках для переработки вторичного сырья виноделия и дистилляции масляных мисцел используют вихревые контактные устройства.

1) Ректификацию широко используют в пром-ти для полного разделения смесей летучих жидкостей, частично или целиком растворимых одна в другой.

Сущность процесса ректификации сводится к выделению из смеси двух или в общем случае нескольких жидкостей с различными температурами кипения одной или нескольких жидкостей в более или менее чистом виде. Это достигается нагреванием и испарением такой смеси с последующим многократным тепло- и массообменом м/д жидкой и паровой фазами; в результате часть легколетучего компонента переходит из жидкой фазы в паровую, а часть менее летучего компонента - из паровой фазы в жидкую.

Процесс ректификации осущ-ют в ректификационной установке, включающей ректификационную колонну, дефлегматор, холодильник-конденсатор, подогреватель исходной смеси, сборники дистиллята и кубового остатка. Дефлегматор, холодильник-конденсатор и подогреватель представляют собой обычные теплообменники. Основным аппаратом установки явл-ся ректификационная колонна, в которой пары перегоняемой ж-ти поднимаются снизу, а навстречу парам сверху стекает жидкость, подаваемая в верхнюю часть аппарата в виде флегмы. В большинстве случаев конечными продуктами явл-ся дистиллят (сконденсированные в дефлегматоре пары легколетучего компонента, выходящие из верхней части колонны) и кубовый остаток (менее летучий компонент в жидком виде, вытекающий из нижней части колонны).

Процесс ректификации может протекать при атмосферном давлении, а также при давлениях выше и ниже атмосферного. Под вакуумом ректификацию проводят, когда разделению
подлежат высококипящие жидкие смеси. Повышенные давления применяют для разделения смесей, находящихся в газообразном состоянии при более низком давлении. Степень разделения смеси жидкостей на составляющие компоненты и чистота получаемых дистиллята и кубового остатка зависят от того, насколько развита поверхность фазового контакта, а следовательно, от количества орошающей жидкости (флегмы) и устройства ректификационной колонны.

Ректификацию можно проводить периодическим или непрерывным способом.

Осн-ые преимущества клапанных тарелок - способность обеспечить эффективный массообмен в большом интервале рабочих нагрузок, несложность конструкции, низкая металлоемкость и невысокая стоимость.

Клапанные тарелки изготовляют с дисковыми и прямоугольными клапанами; работают тарелки в режиме прямоточного или перекрестного движения фаз. В отечественной промышленности наиболее распространены клапанные прямоточные тарелки с дисковыми клапанами. На клапанной прямоточной тарелке (рис) в шахматном порядке расположены отверстия, в которых установлены саморегулирующиеся дисковые клапаны диаметром, способные подниматься при движении пара (газа) на высоту до 6-8 мм.

Дисковый клапан снабжен тремя направляющими, расположенными в плане под углом 45°; две из этих направляющих имеют большую длину. Кроме того, на диске клапана штамповкой выполнены специальные упоры, обеспечивающие начальный зазор м/д диском и тарелкой; это исключает возможность «прилипания» клапана к тарелке (рис, а, положение I). При небольшой произв-ти по пару поднимается легкая часть клапана (рис., положение II) и пар выходит ч/з щель м/д клапаном и полотном тарелки в направлении, противоположном направлению движения жидкости по тарелке. С увеличением скорости пара клапан поднимается и зависает над тарелкой (рис, положение III); теперь пар барботирует в жидкость ч/з кольцевую щель под клапаном. При дальнейшем увеличении произв-ти по пару клапан занимает положение, при котором пар выходит в направлении движения жидкости, уменьшая разность уровней жидкости на тарелке (рис., положение IV). При этом короткая направляющая фиксируется в специальном вырезе на кромке отверстия, обеспечивая заданное положение клапана при его подъеме.

2) Клапанные тарелки показали высокую эффективность при значительных интервалах нагрузок благодаря возможности саморегулирования. В зависимости от нагрузки клапан перемещается вертикально, изменяя площадь живого сечения для прохода пара, причем максимальное сечение определяется высотой устройства, ограничивающего подъем. Площадь живого сечения отверстий для пара составляет 10-15% площади сечения колонны. Скорость пара достигает 1,2 м/с. Клапаны изготовляют в виде пластин круглого или прямоугольного сечения с верхним или нижним ограничителем подъема.

Предельную скорость пара определяют сами контактные элементы, загромождающие внутреннее сечение колонны. У разных контактных элементов есть своя предельная скорость пара в полном сечении колонны, которая находится в диапазоне 0,5...1,2м/с. Это является и максимальной пропускной способностью колонны, которая обычно выражается массовым расходом пара (кг/час) через единицу площади полного сечения колонны (м"). Её величина для разных контактных элементов находится в диапазоне 2000...7000(кг/ч)/м.

3 Материальный баланс процесса выражается общим уравнением

отсюда общий расход

а его удельный расход

В реальной ректификационной колонне равновесие между фазами не достигается и всегда реальная концентрация меньше концентрации поглощаемого газа в жидкости, находящейся в равновесии с поступающим газом. Отсюда следует, что действительный удельный расход l всегда должен быть больше минимального значения lmin .

Значение удельного минимального расхода абсорбента можно определить по формуле:

Производительность колонны повышается, если установить дополнительный штуцер для отвода паров из куба. Производительность ректификационной колонны, стоящей отдельно от куба, сильно зависит от площади соединительного штуцера.

Для увеличения производительности и диапазона устойчивой работы клапанные тарелки выполняют балластными. Над отверстием тарелки 1 на специальных ножках установлены ограничители подъема 4, а внутри их - на ножках 7 легкий клапан 5 и балласт 2. Для исключения прилипания клапана к балласту имеются упоры 3 и 6. При малой производительности по газу тарелка работает как обычная с дисковыми клапанами меньшей массы; при увеличении нагрузки клапан 5 упирается в балласт и работает совместно с ним как один утяжеленный клапан. Производительность колонны повышается, если установить дополнительный штуцер для отвода паров из куба. Производительность ректификационной колонны, стоящей отдельно от куба, сильно зависит от площади соединительного штуцера.

4 С увеличением флегмового числа рабочая линия колонны удаляется от линии равновесия

Следовательно, количество контактных тарелок снижается, снижается и высота колонны.

Вместе с тем с ростом флегмового числа увеличивается количество флегмы, стекающей вниз по колонне, следовательно, на ее испарение надо затратить больше греющего пара – увеличиваются энергозатраты – оптимизация.

5) Захлебывание колонны явл-ся нерасчетным режимом ее работы. В таком состоянии колонна может находиться не более 30...60 секунд. За это время флегма сначала заполняет внутреннюю полость ректификационной части колонны, потом дефлегматор, а затем происходит ее аварийный выброс из колонны ч/з верхний штуцер дефлегматора. Захлебывание колонны легко можно услышать как специфический «булькающий» шум в колонне. Чтобы избежать захлебывания ректификационной установки надо четко следовать рекомендациям по эксплуатации. Стоит отметить, что захлебывание колонны может наступить и при номинальной (правильной) технологической мощности, подведенной к испарительной емкости. Существуют только три причины такому нестандартному поведению колонны. Первая причина - это или засорение нижней части колонны пеной, например, от бражки или переполнение испарительной емкости перерабатываемой жидкостью. Это является прямым нарушение инструкции по эксплуатации, о заполнении испарительной емкости. Вторая причина - это повышенное напряжение в сети (более 230В), что приводит к увеличению тепловой мощности технологического ТЭНа. Третья причина - это сильное понижение атмосферного давления или попытка эксплуатации колонны в высокогорной местности. На эту причину стоит обратить особое внимание.

6) 1 – ёмкость для исходной смеси; 2 – подогреватель; 3 – ректификационная колонна(а-укрепляющая часть, б- исчерпывающая часть); 4 – кипятильник; 5 – дефлегматор; 6 – делитель флегмы; 7 – холодильник; 8 – сборник дистиллята; 9 – сборник кубового остатка;10 – холодильник остатка.

Ректификационная колонна 3 имеет цилиндрический корпус, внутри которого установлены контактные устройства в виде тарелок или насадки. Снизу вверх по колонне движутся пары, поступающие в нижнюю часть аппарата из кипятильника 4, который находится вне колонны, т. е. является выносным (как показано на рисунке 3), либо размещается непосредственно под колонной. Пар, представляющий собой на выходе из кипятильника почти чистый ВК, по мере движения вверх все более обогащается низкокипящим компонентом и покидает верхнюю тарелку колонны в виде почти чистого НК, который практически полностью переходит в паровую фазу на пути пара от кипятильника до верха колонны. Следовательно, с помощью кипятильника создается восходящий поток пара. Пары проходят через слой жидкости на нижней тарелке. Испарение жидкости на тарелке происходит за счет тепла конденсации пара. Пары конденсируются в дефлегматоре 5, охлаждаемом водой, и получаемая жидкость разделяется в делителе 6 на дистиллят и флегму, которая направляется на верхнюю тарелку колонны. Следовательно, с помощью дефлегматора в колонне создается нисходящий поток жидкости. В дефлегматоре 5 могут быть сконденсированы либо все пары, поступающие из колонны, либо только часть их соответствующая количеству возвращаемой в колонну флегмы. В первом случае часть конденсата, остающаяся после отделения флегмы, представляет собой дистиллят (ректификат), или верхний продукт, который после охлаждения в холодильнике 7 направляется в сборник дистиллята 8. Во втором случае несконденсированные в дефлегматоре пары одновременно конденсируются и охлаждаются в холодильнике 7, который при таком варианте работы служит конденсатором-холодильником дистиллята.

Жидкость, выходящая из низа колонны (близкая по составу ВК) также делится на две части. Одна часть, как указывалось, направляется в кипятильник, а другая – остаток (нижний продукт) после охлаждения водой в холодильнике 10 направляется в сборник 9.

7) Материалами для изготовления стальных сварных аппаратов являются полуфабрикаты, поставляемые металлургической промышленностью в виде листового, сортового и фасонного проката, труб, специальных поковок и отливок.

Материалы должны быть химически и коррозионностойкими в заданной среде при её рабочих параметрах, обладать хорошей свариваемостью и соответствующими прочностными и пластическими характеристиками в рабочих условиях, допускать холодную и горячую механическую обработку, а также иметь возможно низкую стоимость и быть недефицитными.

При необходимо учитывать следующие факторы:

Условия работы (давление и температура рабочей среды, степень её коррозионной активности), характер приложения нагрузки (статический, малоцикловый, циклический):

Механические характеристики материала при заданных условиях эксплуатации;

Стоимость материала (с учётом экономного использования дефицитных легирующих элементов);

Например, если в аппарате агрессивная среда, то все элементы соприкасающиеся с ней (корпус, крышка, фланец) - сталь Х18Н10Т, все остальные (опора) – сталь 3

8) В последние годы при реконструкции тарельчатых ректификационных колонн чаще всего тарельчатые контактные устройства заменяются на насадочные. Это объясняется тем, что насадочная колонна обеспечивает меньший перепад давления по высоте аппарата, более широкий диапазон устойчивой работы, более высокий КПД, а, следовательно, и более высокую разделительную способность и др. Так же для незагрязненных жидкостей можно установить ситчатые тарелки, т.к. диапазон устойчивой работы у них больше.

9) К высоким вертикальным аппаратам относятся все аппараты, у которых высота относительно нулевой отметки (относительно поверхности Земли) более 10 метров, которые установлены на открытом воздухе. Если аппарат находится в цехе, то на опрокидывание он рассчитывается, если его высота больше 5-ти диаметров.

Расчет на опрокидывание включает:

1) Расчет корпуса от действующих нагрузок;

2) Расчет корпуса на опрокидывание при минимальной нагрузке без заполнения;

3) Расчет юбочной опоры на смятие;

4) Расчет опорного кольца на изгиб.

1 – корпус; 2 – юбочная опора; 3 – опорное кольцо; 4 – фундаментный болт

От действия ветровой нагрузки возникает опрокидывающий ветровой момент, который стремится оторвать опору от фундамента, следовательно, первое опасное сечение. Вторым опасным сечением является место сварки корпус – опорная обечайка.

Цель расчета: определить усилие от действия ветра, т.е. ветровую нагрузку, по ней ветровой момент и размеры опоры фундаментального кольца и необходимость установки фундаментальных болтов. Задача решается по методике расчета на гибкость жестко закрепленного стержня.

Порядок расчета:

1. Ветровые нагрузки действуют на аппарат в горизонтальной плоскости. При этом они вызывают изгибающий и опрокидывающий ветровые моменты. При расчете вся высота делится на участки 10м. В середине каждого участка прикладывается центр масс. При действии ветра осевая линия отклоняется от положения равновесия, образуя упругую линию. При этом на каждом участке также происходит отклонение центров масс. Силы упругости стремятся возвратить систему в положение равновесия. При этом происходит явление подобное колебаниям упругой системы.

2. Ветровой момент: (1)

3. Ветровая нагрузка:

4. По найденному Мв:

- по минимальному весу на опрокидывание

Расчет фундаментных болтов. Если по условию отрицательное, это означает, что ветровой момент больше момента от веса. Следовательно, надо устанавливать фундаментные болты. Если значение положительно, то 4- 8 болтов М36.

По максимальному весу на сжатие опорной обечайки

Определение толщины опорного кольца. Проверка сварного шва, проверка устойчивости формы опорной обечайки от веса аппарата.

Устойчивость опорной обечайки проверяется из условия:

– допускаемая осевая сжимающая сила

Если обечайка нагружена внутренним избыточным давлением. Толщина стенки определяется по формуле:
,

где S – минимальная толщина корпуса, включая припуск на коррозию; P – расчетное давление, включая гидростатическое давление; D внутренний диаметр, исключая припуск на коррозию; φ – отношение прочности сварной шов/основной материал; [σ] – максимально допустимое растягивающее напряжение при расчетной температуре, кг/см 2 ; C – конструктивная прибавка, см.

Допускаемое наружное давление определяется по формуле: ,

где [Р] р – допускаемое наружное давление в пределах пластичности; [Р] Е – допускаемое наружное давление в пределах упругости.

, ,

где Е – модуль упругости обечайки при расчетной температуре; n y – коэффициент запаса устойчивости; l – расчетная длина корпуса (длина цил. части +1/3 высоты выпуклой части днищ).

1. Горизонтальность тарелок (определяется с помощью уровня, либо по интенсивности барботажа на различных участках тарелки);

2. Уплотнения тарелок

Подготовка аппарата к ремонту: 1) Отклонение от заводского обеспечения, установка заглушек; 2) Удаление остатков продукции; 3) Пропарка, промывка, продуктов

Одной из наиболее часто повреждаемых деталей колонны являются патрубки подачи и отвода. Данная деталь может иметь следующие дефекты:

– трещина в месте приварки фланцев;

– абразивный износ;

– деформация уплотнительной поверхности.

Эти дефекты устраняются следующим образом:

– трещину устраняем разделкой под сварку, завариванием трещины и шлифовкой заваренной трещины;

– абразивный износ устраняем вырезкой поврежденной части, проточкой патрубка с торцов для приварки, приваркой патрубка и шлифовкой заваренной поверхности;

– деформацию уплотнительной поверхности устраняем отрезанием фланца, далее точением уплотнительной поверхности, проточкой под сварку, приваркой фланца и шлифовкой заваренной поверхности.

– Выпуклости в корпусе устраняются с помощью кувалды.

Если диаметр до 800 мм, то аппарат сборный (из царг) - царги разбираются и извлекаются элементы, требующие ремонта.

Если диаметр более 800 мм – аппарат цельносварной, то элементы должны быть разборными. Они разбираются, извлекаются и ремонтируются.

Устройство ректификационной колонны достаточно сложное, и смоделировать его в домашних условиях вряд ли удастся. Но на специализированных интернет-сайтах можно по вполне приемлемой цене купить рабочую установку, которая потребует только незначительного переоборудования вашего самогонного аппарата.

Переоборудование будет касаться только бака испарителя - необходимо установить фланец подходящего диаметра, чтобы можно было закрепить колонну строго вертикально. Если на баке не было термометра, то придется его установить. Без измерения температуры на испарителе контролировать работу колонны чрезвычайно сложно, да, в принципе, и невозможно вообще.

Как работает колонна

Колонна представляет собой тепломассообменник в котором происходят сложные физико-химические процессы. Базируются они на разнице температур кипения различных жидкостей и скрытой теплоемкости фазовых переходов. Это очень загадочно звучит, но на практике выглядит несколько проще.

Теория очень проста - пар, содержащий спирт и различные примеси, которые кипят при разных температурах, отличающихся на несколько градусов, поднимается вверх и конденсируется в верхней части колонны. Образовавшаяся жидкость стекает вниз, и встречают по пути новую порцию горячего пара. Те жидкости, температура кипения которых выше, повторно испаряются. А те, которым не хватило тепловой энергии, остаются в жидком состоянии.

Ректификационная колонна постоянно пребывает в состоянии динамического равновесия пара и жидкости, во многих случаях трудно разделить жидкую и газообразную фазы - все бурлит и кипит. Но по плотности, в зависимости от высоты, все вещества разделены очень четко - вверху легкие, затем более тяжелые и в самом низу - сивушные масла, остальные примеси с высокой температурой кипения, вода. Разделение по фракциям производится очень быстро, и такое состояние поддерживается практически бесконечно долго, при соблюдении температурного режима в колонне.

На высоте, соответствующей максимальному содержанию спиртовых паров, устанавливается заборный патрубок, сквозь который выделяется пар и поступает в конденсатор (холодильник), откуда спирт стекает в сборную емкость. Ректификационная колонна для самогонного аппарата работает очень медленно - отбор, как правило, производится капельно, но при этом обеспечивается высокий уровень очистки.

Колонна работает при атмосферном давлении, или чуть выше его. Для этого в верхней точке устанавливается атмосферный клапан или просто открытая трубка - не успевшие конденсироваться пары покидают колонну. Как правило - спирта в них практически нет.

Состояния парожидкостных компонентов на разных высотах колонны

На графике изображены фиксированные состояния парожидкостных компонентов на разных высотах колонны которые можно контролировать за температурой в данной точке. Горизонтальная часть графика соответствует максимальной концентрации вещества. Разделение не имеет четких границ - вертикальная линия соответствует смеси нижней и верхней фракций. Как видно, объем пограничных зон намного меньше фракционных, что дает определенный люфт температурного режима.

Устройство ректификационной колонны

Базой для колонны служит вертикальная труба из нержавеющей стали или меди. Другие металлы, особенно алюминий, для этой цели не подходят. Труба изолируется извне материалом низкой теплопроводности - утечка энергии может нарушить установившийся баланс и снизить эффективность теплообменных процессов.

В верхней части колонны монтируется предварительный холодильник дефлегматора. Как правило, он представляет собой встроенный или внешний змеевик, охлаждающий приблизительно 1/8-1/10 часть колонны по высоте. Найти в интернете можно и ректификационные колонны с водяной рубашкой или сложными шаровыми холодильниками. Кроме цены, они ни на что больше не влияют. Классический змеевик отлично справляется со своими задачами.

Колонна «Малютка»

Отношение количества отобранного конденсата к общему числу возвращающейся в бак флегмы называется флегмовым числом. Это характеристика отдельной модели колонны и описывает ее рабочие возможности.

Чем меньше флегмовое число, тем колонна производительнее. При Ф=1 колонна работает как обычный самогонный аппарат.

Промышленные установки обладают высокой разделительной фракционной способностью, поэтому их число равно 1,1-1,4. Для бытовой самогонной колонны оптимальным является Ф= 3-5.

Виды колонн

Ректификационная колонна для самогонного аппарата для увеличения точек соприкосновения пара и жидкости, где происходят теплообменные и диффузионные процессы, снабжается наполнителями, значительно увеличивающими площадь контакта. По типу внутренней конструкции колонны подразделяются на тарельчатые и насадочные. Классификация по производительности или высоте не показывает реальных возможностей.

Для увеличения площади контакта внутрь колонны помещается свитая в спираль мелкая сетка из нержавейки, насыпные мелкие шары, кольца Рашига, мелкие спиральки из проволоки. Они плотно укладываются или засыпаются на высоту до ¾ длины колонны, не достигая точки забора спирта.

Термометр должен находиться в свободной от насадок зоне, и показывать реальную температуру среды. Термометр выбирается электронный, как обладающий наименьшей инертностью. В некоторых моделях колонн роль играют десятые доли градуса. Для получения чистого спирта в зоне отбора температура должна поддерживаться в пределах 72,5-77 С.

Тарельчатая ректификационная колонна намного сложнее в изготовлении - конструкция колпачковых или ситчатых тарелок, представляющих собой горизонтальные перегородки внутри, сквозь которые жидкость протекает с некоторой задержкой. На каждой из тарелок создается зона барботирования, повышающая степень извлечения спиртовых паров из флегмы. Иногда ректификационные колонны называют укрепляющими - на них достигается почти стопроцентный выход спирта при минимуме посторонних добавок.

Работает колонна при атмосферном давлении, для связи с внешней средой колонна оборудуется специальным клапаном или открытой трубкой в верхней части конструкции. Этот факт определяет одну из особенностей ректификационной колонны для самогонного аппарата - при разном атмосферном давлении она работает по-разному. Температурный режим изменяется в пределах нескольких градусов (разница на термометре бака и колонны). Соотношение устанавливается экспериментально. По этой причине с колонной ТЭН.

Купив рабочую ректификационную колонну, или построив ее своими руками, вы сможете получить спирт высокой очистки без особых сложностей. Особенно эффективна колонна при перегонке самогона, полученного из обычного дистиллятора.

Конструкции ректификационных колонн

Ректификационные колонны отличаются, в основном, конструкцией внутреннего устройства для распределения жидкой и паровой фаз. Взаимодействие жидкости и пара осуществляется в колоннах путём барботирования пара через слой жидкости на тарелках или же путём поверхностного контакта пара и жидкости на насадке или на поверхности жидкости, стекающей тонкой плёнкой.

В ректификационных установках применяют три основных типа колонн:

1) колпачковые,

2) ситчатые,

3) насадочные,

4) барботажные.

Разработаны также конструкции аппаратов для ректификации, в которых интенсификация процесса разделения достигается под действием центробежной силы (центробежные ректификаторы).

Колпачковые колонны

Эти колонны наиболее распространены в ректификационных установках. На рисунке 3 схематически изображена колонна небольшого диаметра, состоящая из тарелок 1, на каждой из которых имеется один колпачок 2 круглого сечения и патрубок 3 для прохода пара. Края колпачка погружены в жидкость. Благодаря этому на тарелке создается гидравлический затвор, и пар, выходящий из колпачка, должен проходить через слой жидкости, находящийся на тарелке. Колпачки имеют отверстия или зубчатые прорези для раздробления пара на мелкие пузырьки, т.е. для увеличения поверхности его соприкосновения с жидкостью.

Приток и отвод жидкости, а также высоту жидкости на тарелке регулируют при помощи переливных трубок 4, которые расположены на диаметрально противоположных концах тарелки; поэтому жидкость течет на соседних тарелках во взаимно противоположных направлениях.

1-тарелка; 2-колпачок; 3-паровой патрубок; 4-переливная трубка.

Рисунок 3- Схема устройства тарельчатой (колпачковой) колонны

Схема работы колпачковой тарелки изображена на рисунке 4. Выходящие через прорези колпачки пузырьки пара сливаются в струйки, которые проходят через слой жидкости, находящейся на тарелке, и над жидкостью образуется слой пены и брызг, - основная область массообмена и теплообмена между паром и жидкостью на тарелке.

Процесс барботажа на тарелке весьма сложен. Проводившиеся до сих пор исследования (В.Н. Стабников, А.М. Шуер и др.) дают возможность представить лишь качественную картину процесса.

При движении струйки пара обычно сливаются друг с другом; при этом некоторая часть сечения прорезей обнажается и образуются каналы, по которым газ проходит из-под колпачка сквозь жидкость. Поэтому поверхность взаимодействия газа с жидкостью непосредственно в зоне барботажа невелика. Основная зона фазового контакта находится в области пены и брызг над жидкостью, которые образуются вследствие распыления пара в жидкости и уноса брызг при трении пара о жидкость.

Интенсивность образования пены и брызг зависит от скорости пара и глубины погружения колпачка в жидкость. Сечение и форма прорезей колпачка имеют второстепенное значение, но желательны узкие прорези, так как они разбивают газ на более мелкие струйки, увеличивая поверхность соприкосновения с жидкостью.

Работа колпачка в оптимальных условиях при предельной скорости и наибольшего к.п.д. высота открытия прорези колпачка наибольшая, что способствует увеличению пути паров и времени их контакта с жидкостью.

Рисунок 4- Схема работы колпачковой тарелки.

Виды колпачковых тарелок

1. Колпачковая тарелка с радиальным переливом жидкости

Для создания достаточной поверхности соприкосновения между паром и жидкостью на тарелках обычно устанавливают не один, а большое число колпачков, как на рисунке 5.

Колпачки располагают на близком расстоянии друг от друга (равен в среднем 1,5 диаметра колпачка) с тем, чтобы пузырьки, выходящие из соседних колпачков, прежде чем принять вертикальное направление движения, могли бы сталкиваться друг с другом.

Типовые колпачковые тарелки изготовляют с радиальным и с диаметральным переливом жидкости. Тарелки первого типа представляют собой вырезанные из стального листа диски 1 и 2, которые крепятся на болтах 7 и прокладках 8 к опорному кольцу 3. Колпачки 4 расположены на тарелке в шахматном порядке. Жидкость переливается на лежащую ниже тарелку по периферийным переливным трубкам 5, течёт к центру и сливается на следующую тарелку по центральной переливной трубке 6, затем снова течёт к периферии и т.д.


1 и 2-диски; 3-опорное кольцо; 4-колпачки; 5-периферийные колпачковые трубки; 6-центральная переливная трубка; 7-болты; 8-прокладки.

Рисунок 5- Колпачковая тарелка с радиальным переливом жидкости