Ремонт Дизайн Мебель

Молекула кто открыл. Масса и размер молекул. Интересно знать, что

Молекулы с мультиплетностью , отличной от единицы (то есть с неспаренными электронами и ненасыщенными валентностями) - радикалами .

Молекулы относительно высокой молекулярной массы , состоящие из повторяющихся низкомолекулярных фрагментов, называются макромолекулами .

С точки зрения квантовой механики молекула представляет собой систему не из атомов, а из электронов и атомных ядер, взаимодействующих между собой.

Особенности строения молекул определяют физические свойства вещества , состоящего из этих молекул.

К веществам, сохраняющим молекулярную структуру в твёрдом состоянии, относятся, например, вода, оксид углерода (IV), многие органические вещества. Они характеризуются низкими температурами плавления и кипения. Большинство же твёрдых (кристаллических) неорганических веществ состоят не из молекул, а из других частиц (ионов, атомов) и существуют в виде макротел (кристалл хлорида натрия, кусок меди и т. д.).

Состав молекул сложных веществ выражается при помощи химических формул .

Энциклопедичный YouTube

    1 / 5

    ✪ Молекула. Атом. Вещество

    ✪ Видеоурок "Объяснение электрических явлений"

    ✪ Строение атома. Объяснение электрических явлений | Физика 8 класс #10 | Инфоурок

    ✪ Урок 151. Средняя кинетическая энергия молекул многоатомного газа

    ✪ Что такое атом?

    Субтитры

История

На международном съезде химиков в Карлсруэ в 1860 году были приняты определения понятий молекулы и атома. Молекула была определена как наименьшая частица химического вещества, обладающая всеми его химическими свойствами.

Классическая теория химического строения

В классической теории химического строения молекула рассматривается как наименьшая стабильная частица вещества, обладающая всеми его химическими свойствами.

Молекула данного вещества имеет постоянный состав, то есть одинаковое количество атомов, объединённых химическими связями , при этом химическая индивидуальность молекулы определяется именно совокупностью и конфигурацией химических связей, то есть валентными взаимодействиями между входящими в её состав атомами, обеспечивающими её стабильность и основные свойства в достаточно широком диапазоне внешних условий. Невалентные взаимодействия (например, водородные связи), которые зачастую могут существенно влиять на свойства молекул и вещества, образуемого ими, в качестве критерия индивидуальности молекулы не учитываются.

Центральным положением классической теории является положение о химической связи, при этом допускается наличие не только двухцентровых связей, объединяющих пары атомов, но и наличие многоцентровых (обычно трёхцентровых, иногда - четырёхцентровых) связей с «мостиковыми» атомами - как, например, мостиковых атомов водорода в боранах , природа химической связи в классической теории не рассматривается - учитываются лишь такие интегральные характеристики, как валентные углы , диэдральные углы (углы между плоскостями, образованными тройками ядер), длины связей и их энергии .

Таким образом, молекула в классической теории представляется динамической системой, в которой атомы рассматриваются как материальные точки и в которой атомы и связанные группы атомов могут совершать механические вращательные и колебательные движения относительно некоторой равновесной ядерной конфигурации, соответствующей минимуму энергии молекулы и рассматривается как система гармонических осцилляторов .

Молекула состоит из атомов, а если точнее, то из атомных ядер, окруженных определенным числом внутренних электронов, и внешних валентных электронов, образующих химические связи. Внутренние электроны атомов обычно не участвуют в образовании химических связей. Состав и строение молекул вещества не зависят от способа его получения.

Атомы объединяются в молекуле в большинстве случаев с помощью химических связей. Как правило, такая связь образуется одной, двумя или тремя парами электронов, находящихся в совместном владении двух атомов, образуя общее электронное облако, форма которого описывается типом гибридизации. Молекула может иметь положительно и отрицательно заряженные атомы (ионы).

Состав молекулы передается химическими формулами. Эмпирическая формула устанавливается на основе атомного соотношения элементов вещества и молекулярной массы .

Геометрическая структура молекулы определяется равновесным расположением атомных ядер. Энергия взаимодействия атомов зависит от расстояния между ядрами. На очень больших расстояниях эта энергия равна нулю. Если при сближении атомов образуется химическая связь, то атомы сильно притягиваются друг к другу (слабое притяжение наблюдается и без образования химической связи), при дальнейшем сближении начинают действовать электростатические силы отталкивания атомных ядер. Препятствием к сильному сближению атомов является также невозможность совмещения их внутренних электронных оболочек.

Каждому атому в определенном валентном состоянии в молекуле можно приписать определенный атомный, или ковалентный радиус (в случае ионной связи - ионный радиус), который характеризует размеры электронной оболочки атома (иона) образующего химическую связь в молекуле. Размер электронной оболочки молекулы, является условной величиной. Существует вероятность (хотя и очень малая) найти электроны молекулы и на большем расстоянии от её атомного ядра. Практические размеры молекулы определяются равновесным расстоянием, на которое они могут быть сближены при плотной упаковке молекул в молекулярном кристалле и в жидкости . На больших расстояниях молекулы притягиваются друг к другу, на меньших - отталкиваются. Размеры молекулы можно найти с помощью рентгеноструктурного анализа молекулярных кристаллов. Порядок величины этих размеров может быть определен из коэффициентов диффузии, теплопроводности и вязкости газов и с плотности вещества в конденсированном состоянии. Расстояние, на которое могут сблизиться валентно не связанные атомы одного и того же или разных молекул, может быть охарактеризована средними значениями так называемых ван дер ваальсовых радиусов (Ǻ).

Радиус Ван-дер-Ваальса существенно превышает ковалентный. Зная величины ван дер ваальсовых, ковалентных и ионных радиусов, можно построить наглядные модели молекул, которые бы отражали форму и размеры их электронных оболочек.

Ковалентные химические связи в молекуле расположены под определенными углами, которые зависят от состояния гибридизации атомных орбиталей. Так, для молекул насыщенных органических соединений характерно тетраэдральное (четырехгранное) расположение связей, образуемых атомом углерода, для молекул с двойной связью (С = С) - плоское расположение атомов углерода, для молекул соединений с тройной связью (С º С) - линейное расположение связей. Таким образом, многоатомная молекула имеет определенную конфигурацию в пространстве, то есть определенную геометрию расположения связей, которая не может быть изменена без их разрыва. Молекула характеризуется той или иной симметрией расположения атомов. Если молекула не имеет плоскости и центра симметрии, то она может существовать в двух конфигурациях, которые представляют собой зеркальные отражения друг друга (зеркальные антиподы, или стереоизомеры). Все важнейшие биологические функциональные вещества в живой природе существуют в форме одного определенного стереоизомера.

Квантохимическая теория химического строения

В квантохимической теории химического строения основными параметрами, определяющими индивидуальность молекулы, является её электронная и пространственная (стереохимическая) конфигурации. При этом в качестве электронной конфигурации, определяющей свойства молекулы принимается конфигурация с наинизшей энергией, то есть основное энергетическое состояние.

Представление структуры молекул

Молекулы состоят из электронов и атомных ядер, расположение последних в молекуле передаёт структурная формула (для передачи состава используется т. н. брутто-формула). Молекулы белков и некоторых искусственно синтезированных соединений могут содержать сотни тысяч атомов. Отдельно рассматриваются макромолекулы полимеров.

Молекулы являются объектом изучения теории строения молекул, квантовой химии , аппарат которых активно использует достижения квантовой физики , в том числе релятивистских её разделов. Также в настоящее время развивается такая область химии, как молекулярный дизайн. Для определения строения молекул конкретного вещества современная наука располагает колоссальным набором средств: электронная спектроскопия , колебательная спектроскопия , ядерный магнитный резонанс и электронный парамагнитный резонанс и многие другие, но единственными прямыми методами в настоящее время являются дифракционные методы, как то: рентгеноструктурный анализ и дифракция нейтронов .

Взаимодействие атомов при образовании молекулы

Природа химических связей в молекуле оставалась загадкой до создания квантовой механики - классическая физика не могла объяснить насыщаемость и направленность валентных связей. Основы теории химической связи были заложены в 1927 году Гайтлером и Лондоном на примере простейшей молекулы Н 2 . Позже, теория и методы расчетов были значительно усовершенствованы.

Химические связи в молекулах подавляющего большинства органических соединений является ковалентными. Среди неорганических соединений существуют ионные и донорно-акцепторные связи, которые реализуются в результате обобществления пары электронов атома. Энергия образования молекулы из атомов во многих рядах подобных соединений приближенно аддитивна. То есть можно считать, что энергия молекулы - это сумма энергий её связей, имеющих постоянные значения в таких рядах.

Аддитивность энергии молекулы выполняется не всегда. Примером нарушения аддитивности являются плоские молекулы органических соединений с так называемыми сопряженными связями, то есть с кратными связями, которые чередуются с единичными. Сильная делокализация p-состояний электронов приводит к стабилизации молекулы. Выравнивание электронной плотности вследствие коллективизации p-состояний электронов по связям выражается в укорочении двойных связей и удлинении одинарных. В правильном шестиугольнике межуглеродных связей бензола все связи одинаковы и имеют длину, среднюю между длиной одинарной и двойной связи. Сопряжение связей ярко проявляется в молекулярных спектрах. Современная квантовомеханическая теория химических связей учитывает делокализации не только p-, но и s-состояний электронов, которая наблюдается в любых молекулах.

В подавляющем большинстве случаев суммарный спин валентных электронов в молекуле равен нулю. Молекулы, содержащие неспаренные электроны - свободные радикалы (например, атомный водород Н, метил ·CH 3), обычно неустойчивы, поскольку при их взаимодействии друг с другом происходит значительное снижение энергии вследствие образования ковалентных связей .

Межмолекулярное взаимодействие

Спектры и строение молекул

Электрические, оптические, магнитные и другие свойства молекул связаны с волновыми функциями и энергиями различных состояний молекул. Информацию о состояниях молекул и вероятности перехода между ними дают молекулярные спектры.

Частоты колебаний в спектрах определяются массами атомов, их расположением и динамикой межатомных взаимодействий. Частоты в спектрах зависят от моментов инерции молекул, определение которых с спектроскопических данных позволяет получить точные значения межатомных расстояний в молекуле. Общее число линий и полос в колебательном спектре молекулы зависит от её симметрии.

Электронные переходы в молекулах характеризуют структуру их электронных оболочек и состояние химических связей . Спектры молекул, которые имеют большее количество связей, характеризуются длинноволновыми полосами поглощения, попадающими в видимую область. Вещества, которые построены из таких молекул, характеризуются окраской; к таким веществам относятся все органические красители.

Молекулы в химии, физике и биологии

Понятие молекулы является основным для химии, и большей частью сведений о строении и функциональность молекул наука обязана химическим исследованиям. Химия определяет строение молекул на основе химических реакций и, наоборот, на основе строения молекулы, определяет каким будет ход реакций.

Строением и свойствами молекулы определяются физические явления, которые изучаются молекулярной физикой. В физике понятие молекулы используется для объяснения свойств газов, жидкостей и твёрдых тел. Подвижностью молекул определяется способность вещества к диффузии , её вязкость, теплопроводность и т. д. Первое прямое экспериментальное доказательство существования молекул было получено французским физиком Жаном Перреном в 1906 году при изучении броуновского движения .

Поскольку все живые организмы существуют на основе тонко сбалансированного химического и нехимического взаимодействия между молекулами, изучение строения и свойств молекул имеет фундаментальное значение для биологии и естествознания в целом.

Развитие биологии, химии и молекулярной физики привели к возникновению молекулярной биологии , которая исследует основные явления жизни, исходя из строения и свойств биологически функциональных молекул.

Может содержать положительно и отрицательно заряженные , т. е. ; в этом случае реализуются . Помимо указанных, в существуют и более слабые взаимодействия между . Между валентно не связанными действуют силы отталкивания.

Развитие учения о структуре неразрывно связано с успехами прежде всего . Теория строения , созданная в 60-х гг. 19 в. трудами А. М. Бутлерова, Ф. А. Кекуле, А. С. Купера и др., позволила представить или формулами строения, выражающими последовательность валентных в . При одной и той же эмпирической формуле могут существовать разного строения, обладающие различными свойствами (явление ). Таковы, например, С 5 Н 5 ОН и (СН 3) 2 О. этих соединений разнятся:

В некоторых случаях изомерные быстро превращаются одна в другую и между ними устанавливается динамическое (см. ). В дальнейшем Я. Х. Вант-Гофф и независимо французский химик А. Ж. Ле Бель пришли к пониманию пространственного расположения в и к объяснению явления . А. Вернер (1893) распространил общие идеи теории строения на неорганические . К началу 20 в. располагала подробной теорией , исходящей из изучения только их химических свойств. Замечательно, что прямые физические методы исследования, развитые позднее, в подавляющем большинстве случаев полностью подтвердили , установленные путём исследования макроскопических количеств , а не отдельных .

Равновесные межъядерные расстояния r 0 и энергии D (при 25° С) некоторых двухатомных

r 0, Ǻ

r 0 , Ǻ

C-Br…………….

Cº C……………...

C-I………………

C-H……………..

C-S……………..

C-O……………..

O-H…………….

C=O……………...

N-H……………..

C-N……………..

S-H……………..

В подавляющем большинстве случаев суммарный валентных в равен нулю, т. е. попарно насыщены. , содержащие неспаренные - (например, атомный Н · · , метил CH· · 3), обычно неустойчивы, т. к. при их соединении друг с другом происходит значительное понижение энергии вследствие образования валентных связей. Наиболее эффективным методом изучения строения является ().

Электрические и оптические свойства . Поведение в электрическом поле определяется основными электрическими характеристиками - постоянным и . означает несовпадение центров тяжести положительных и отрицательных зарядов в , т. е. электрическую асимметрию . Соответственно , имеющие центр , например H 2 , лишены постоянного ; напротив, в HCl смещены к Cl и равен 1,03 D (1,03× 10 -18 ед. СГС). характеризуется способность электронной оболочки любой смещаться под действием электрического поля, в результате чего в создаётся индуцированный . Значения и находят экспериментально с помощью измерений диэлектрической проницаемости. В случае аддитивности свойств может быть представлен суммой связей (с учётом их направления), то же относится к .

Элементов, у которых или нечётны, обладают ядерным спиновым парамагнетизмом. Для таких ядер характерен

Вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Молекулярная физика - раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе их молекулярного строения.

Тепловое движение - беспорядочное (хаотическое) движение атомов или молекул вещества.

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

Молекулярно-кинетическая теория - теория, объясняющая тепловые явления в макроскопических телах и свойства этих тел на основе их молекулярного строения.

Основные положения молекулярно-кинетической теории:

  1. вещество состоит из частиц - молекул и атомов, разделенных промежутками,
  2. эти частицы хаотически движутся,
  3. частицы взаимодействуют друг с другом.

МАССА И РАЗМЕРЫ МОЛЕКУЛ

Массы молекул и атомов очень малы. Например, масса одной молекулы водорода равна примерно 3,34*10 -27 кг, кислорода - 5,32*10 -26 кг. Масса одного атома углерода m 0C =1,995*10 -26 кг

Относительной молекулярной (или атомной) массой вещества Mr называют отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:(атомная единица массы).

Количество вещества - это отношение числа молекул N в данном теле к числу атомов в 0,012 кг углерода N A:

Моль - количество вещества, содержащего столько молекул, сколько содержится атомов в 0,012 кг углерода.

Число молекул или атомов в 1 моле вещества называют постоянной Авогадро:

Молярная масса - масса 1 моля вещества:

Молярная и относительная молекулярная массы вещества связаны соотношением: М = М r *10 -3 кг/моль.

СКОРОСТЬ ДВИЖЕНИЯ МОЛЕКУЛ

Несмотря на беспорядочный характер движения молекул, их распределение по скоростям носит характер определенной закономерности, которая называется распределением Максвелла.

График, характеризующий это распределение, называют кривой распределения Максвелла. Она показывает, что в системе молекул при данной температуре есть очень быстрые и очень медленные, но большая часть молекул движется с определенной скоростью, которая называется наиболее вероятной. При повышении температуры эта наиболее вероятная скорость увеличивается.

ИДЕАЛЬНЫЙ ГАЗ В МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

Идеальный газ - это упрощенная модель газа, в которой:

  1. молекулы газа считаются материальными точками,
  2. молекулы не взаимодействуют между собой,
  3. молекулы, соударяясь с преградами, испытывают упругие взаимодействия.

Иными словами, движение отдельных молекул идеального газа подчиняется законам механики. Реальные газы ведут себя подобно идеальным при достаточно больших разрежениях, когда расстояния между молекулами во много раз больше их размеров.

Основное уравнение молекулярно-кинетической теории можно записать в виде

Скорость называют средней квадратичной скоростью.

ТЕМПЕРАТУРА

Любое макроскопическое тело или группа макроскопических тел называется термодинамической системой.

Тепловое или термодинамическое равновесие - такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т.д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.

Температура - физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Абсолютный нуль температуры - предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.

Термометр - прибор для измерения температуры. Обычно термометры градуируют по шкале Цельсия: температуре кристаллизации воды (таяния льда) соответствует 0°С, температуре ее кипения - 100°С.

Кельвин ввел абсолютную шкалу температур, согласно которой нулевая температура соответствует абсолютному нулю, единица измерения температуры по шкале Кельвина равна градусу Цельсия: [Т] = 1 К (Кельвин).

Связь температуры в энергетических единицах и температуры в градусах Кельвина:

где k = 1,38*10 -23 Дж/К - постоянная Больцмана.

Связь абсолютной шкалы и шкалы Цельсия:

T = t + 273

где t - температура в градусах Цельсия.

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре:

Средняя квадратичная скорость молекул

Учитывая равенство (1), основное уравнение молекулярно-кинетической теории можно записать так:

УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Пусть газ массой m занимает объем V при температуре Т и давлении р , а М - молярная масса газа. По определению, концентрация молекул газа: n = N/V , где N -число молекул.

Подставим это выражение в основное уравнение молекулярно-кинетической теории:

Величину R называют универсальной газовой постоянной, а уравнение, записанное в виде

называют уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Нормальные условия - давление газа равно атмосферному ( р = 101,325 кПа) при температуре таяния льда ( Т = 273,15 К ).

1. Изотермический процесс

Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

Если Т =const, то

Закон Бойля-Мариотта

Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется: p 1 V 1 =p 2 V 2 при Т = const

График процесса, происходящего при постоянной температуре, называется изотермой.

2. Изобарный процесс

Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

Закон Гей-Люссака

Объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре:

Если газ, имея объем V 0 находится при нормальных условиях: а затем при постоянном давлении переходит в состояние с температурой Т и объемом V, то можно записать

Обозначив

получим V=V 0 T

Коэффициент называют температурным коэффициентом объемного расширения газов. График процесса, происходящего при постоянном давлении, называется изобарой .

3. Изохорный процесс

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Ecли V = const , то

Закон Шарля

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре:

Если газ, имея объем V 0 ,находится при нормальных условиях:

а затем, сохраняя объем, переходит в состояние с температурой Т и давлением р , то можно записать

График процесса, происходящего при постоянном объеме, называется изохорой .

Пример. Каково давление сжатого воздуха, находящегося в баллоне вместимостью 20 л при 12°С, если масса этого воздуха 2 кг?

Из уравнения состояния идеального газа

определим величину давления.

Молекула (франц. molecule, от лат. moles - масса) - это наименьшая способная к самостоятельному существованию частица вещества, обладающая его химическими свойствами.

Учение о строении и свойствах молекул приобрело исключительный интерес для познания субмикроскопической структуры клеток и тканей, а также механизма биологических процессов на молекулярном уровне. Большие успехи в изучении структуры молекул и, в частности, молекул таких биополимеров, как белки и нуклеиновые кислоты, показали, что важнейшие функции этих веществ в организмах осуществляются на уровне отдельных молекул и поэтому должны исследоваться как молекулярные явления. Установлено, например, что такие функции белков, как ферментативная, структурная, сократительная, иммунная, транспортная (обратимое связывание и перенос жизненно необходимых веществ) разыгрываются на молекулярном уровне и непосредственно определяются структурой и свойствами молекул этих веществ. Наследственность и изменчивость организмов связаны с особой структурой и свойствами молекул нуклеиновых кислот, в которых зафиксирована вся генетическая информация, необходимая для синтеза белков организма. Небольшие отклонения в структуре или составе молекул ряда биологически важных веществ или изменения в молекулярном механизме некоторых обменных процессов являются причиной возникновения ряда заболеваний (например, серповидноклеточная анемия, наследственная галактоземия, сахарный диабет и др.), называемых молекулярными болезнями.

Молекула каждого вещества состоит из определенного числа атомов (см.) одного химического элемента (простое вещество) или различных элементов (сложное вещество), объединенных посредством химических (валентных) связей. Состав молекулы выражают химической формулой, в которой знаки элементов указывают вид атомов, образующих молекулу, а числа, стоящие справа внизу, показывают, сколько атомов каждого элемента входит в состав молекулы. Так, из химической формулы глюкозы С 6 H 12 O 6 следует, что молекула глюкозы состоит из 6 атомов углерода, 12 атомов водорода и 6 атомов кислорода. Молекулы инертных газов и паров некоторых металлов одноатомны. Это самые простые молекулы. Наиболее сложными являются молекулы белков (см.), нуклеиновых кислот (см.) и других биополимеров, состоящие из многих тысяч атомов.

Для нахождения химической формулы молекулы необходимо определить приблизительный молекулярный вес (см.) исследуемого вещества и простейшую (эмпирическую) формулу его молекулы. Последнюю выводят из процентного состава данного вещества и атомных весов (см.) химических элементов, входящих в состав этого вещества. Так, например, химическим анализом установлено, что бензол состоит из 92,26% углерода и 7,74% водорода. Отсюда следует, что отношение числа атомов углерода к числу атомов водорода в молекуле бензола равно:

где 12,011 и 1,008 - атомные веса углерода и водорода соответственно. Следовательно, простейшая формула бензола должна быть СН. Сопоставляя простейшую формулу бензола с его приблизительным молекулярным весом (78,1), найденным опытным путем, определяют его действительную, или истинную, формулу С 6 Н 6 .

Размеры молекул выражают в А. Так например, диаметр молекулы воды, предполагая, что она имеет сферическую форму, составляет 3,8 А. Молекулы высокомолекулярных веществ значительно больше, например линейные размеры больших и малых осей палочковидных молекул фибриногена быка равны 700 и 40 А, а вируса табачной мозаики - 2800 и 152 А соответственно. Мерой относительной массы молекулы является молекулярный вес (см.), величина которого колеблется от нескольких единиц до миллионов.

Последовательность, в которой атомы связаны в молекуле (химическое строение молекул по А. М. Бутлерову), изображают так называемыми структурными формулами. Например, химическое строение уксусной кислоты С 2 Н 4 O 2 представляют следующей структурной формулой:

где каждая линия обозначает единицу валентности (см.), число линий, подходящих к атому, равно его валентности в данном соединении.

Химическое строение молекулы, находимое на основании определения молекулярного веса, химического состава и изучения химических свойств исследуемого вещества и окончательно подтверждаемое его синтезом из веществ, химическое строение которых известно, является важным фактором, определяющим свойства вещества, в частности его фармакологическое действие, токсичность и биологические функции. Различие в свойствах изомеров (см. Изомерия) является примером зависимости свойств веществ от химического строения их молекул. Атомный состав молекул изомеров одинаков, так, например, диметиловый эфир и этиловый спирт, будучи изомерами, имеют одинаковые химические формулы С 2 Н 6 O, однако структурные формулы их различны:

чем и объясняются их различные свойства.

Способность атома образовывать то или иное число химических связей с другими атомами в молекулах называют валентностью данного атома. При образовании химической (валентной) связи происходит перегруппировка внешних (валентных) электронов взаимодействующих атомов, в результате которой внешние электронные оболочки атомов в молекуле приобретают устойчивую структуру, свойственную атомам инертных газов (см.) и состоящую обычно из восьми электронов (электронный октет). В зависимости от способа перегруппировки валентных электронов различают несколько основных типов химических связей.

Ионная (электровалентная) связь возникает между атомами элементов, сильно различающихся по химическим свойствам, например между атомами щелочных металлов и атомами галогенов. При этом атом металла отдает электрон атому галогена (рис. 1).


Рис. 1. Образование молекулы хлористого натрия.

Атом, отдающий электрон, становится положительно заряженным ионом. Атом, принимающий электрон, становится отрицательно заряженным ионом. Возникающие таким путем противоположно заряженные ионы взаимно притягиваются, образуя молекулу. Молекулы и соединения с ионными связями (например, соли и окислы металлов первой и второй групп периодической системы элементов) называются гетерополярными. Ионная связь характеризуется большой прочностью (энергия связи), т. е. работой, необходимой для разрыва молекулы на отдельные ионы.

Ковалентная (атомная) связь возникает при взаимодействии одинаковых или близких по свойствам атомов. При этом каждый из соединяющихся атомов отдает по одному или по нескольку валентных электронов на образование пары (или нескольких пар электронов), которая становится общей для обоих атомов. Обобщенная пара электронов, охватывая в своем движении ядра соединяющихся атомов, удерживает их один возле другого. К молекулам с ковалентной связью относятся молекулы простых газов, окислов и водородных соединений не металлов и многих органических соединений:

Точками обозначены электроны, находящиеся на внешних электронных оболочках атомов, химическими знаками - ядра атомов со всеми электронными оболочками, кроме внешних. Пара электронов, связывающих атомы, соответствует валентной черте в обычных структурных формулах.

Молекулы, в которых электрические центры тяжести отрицательных (электроны) и положительных (ядра атомов) зарядов совпадают, называют гомеополярными. К ним относятся, например, молекулы простых газов, углеводородов. Если электрические центры тяжести отрицательных и положительных зарядов в молекулах не совпадают, молекулы называют полярными (например, молекулы воды, аммиака, галогеноводородов, спиртов, кетонов, альдегидов, эфиров). Полярная молекула ведет себя как диполь, т. е. система из двух электрических зарядов е+ и е- , одинаковых по величине, но противоположных по знаку, расположенных на пекотором расстоянии h один от другого (рис. 2).


Рис. 2. Схема диполя.

Произведение e·h=μ называют дипольным моментом молекулы. Последний является мерой полярности молекулы. Вещества, состоящие из полярных молекул, имеют более высокие температуру кипения, теплоемкость, теплоту парообразования и поверхностное натяжение, чем вещества, состоящие из гомеополярных молекул. Взаимодействие между полярными молекулами является одной из причин ассоциации молекул в жидкостях, а взаимодействие полярных молекул растворителя с полярными молекулами или ионами растворенного вещества - сольватации последних. Скорость диффузии полярных молекул через мембрану клеток меньше таковой для гомеополярных молекул.

Координационная (семиполярная, донорно-акцепторная) связь - это разновидность ковалентной связи, возникает между атомами, входящими в состав разных молекул, у одного из которых имеется неподеленная пара электронов, а у другого не хватает двух электронов для образования устойчивой внешней электронной оболочки. Такого рода связи характерны для комплексных соединений. Так, например, соединение молекулы аммиака NH 3 с молекулой фтористого бора BF3 в комплексную молекулу аммиаката фтористого бора осуществляется неподеленной парой электронов азота

Атом азота служит донором, атом бора акцептором электронной пары.

Водородная связь осуществляется между атомом водорода, ковалентно связанным с атомом F, О или N, и атомами F, О или N, находящимися в других молекулах. Прочность водородной связи невелика (5-10 ккал/моль), однако достаточна для образования ассоциаций молекул в жидкостях и растворах. В воде, например, такие ассоциации имеют следующее строение (водородные связи обозначены пунктиром):

Водородные связи возникают не только между молекулами, но и между атомами внутри одной и той же молекулы; это так называемые внутримолекулярные водородные связи (водородные мостики). Примером такой связи может служить водородная связь между атомом водорода и атомом кислорода в молекуле o-метилсалицилата:

Вследствие наличия этой связи свойства o-метилсалицилата резко отличаются от свойств m- и n-изомеров. Наличие водородных мостиков в молекулах нуклеиновых кислот, белков и других полимеров во многом определяет лабильность этих молекул. Водородные связи играют значительную роль в субмикроскопической структуре протоплазмы.

При помощи рентгено-, электроно-, нейтронографии, молекулярной спектроскопии и ядерного магнитного резонанса удалось установить пространственное расположение отдельных атомов в молекуле, т. е. геометрическую конфигурацию молекул ряда веществ, в том числе молекул биологически важных веществ.

Определение пространственной конфигурации молекул слагается из определения так называемые остова молекулы, т. е. пространственного расположения ядер образующих ее атомов, и распределения электронов в пределах данной молекулы.

Остов молекулы находят на основании данных о длине связи и величине валентных углов, определяемых с помощью указанных выше методов. Длина связи представляет собой расстояние между центрами двух атомов в молекуле, связанных друг с другом ковалентной связью. Меньший по величине угол, образуемый прямыми, соединяющими центры двух атомов А 1 и А 2 с центром третьего атома А 3 в данной молекуле, называют валентным углом. Остов молекулы не является абсолютно жестким. Например, в молекулах органических соединений атомы углерода могут вращаться около ординарных (простых) связей, при этом меняется взаимное положение ядер, но остаются постоянными последовательность соединения атомов в молекуле, длина связей и валентные углы. Такие различные формы молекул, возникающие в результате поворота атома углерода вокруг ординарной связи, называют конформациями. Различные конформации одной и той же молекулы легко и обратимо переходят друг в друга, чем объясняются отсутствие изомеров вращения и переход молекул в форму, наиболее соответствующую для протекания той или иной реакции.

Распределение электронов в молекулах находят главным образом с помощью теоретических расчетов, в основе которых лежат два основных принципа квантовой химии. Первый из них утверждает, что электроны в атомах и молекулы могут находиться лишь на дискретных и совершенно определенных энергетических уровнях. Согласно второму принципу электроны в атомах и молекулы нельзя рассматривать как точечные частицы, положение и скорость которых в молекуле (или атоме) можно точно определить для каждого момента времени. В действительности, как учит квантовая механика, можно определить лишь вероятность нахождения электрона в некоторых областях пространства в данный момент времени. Поэтому можно представить, что заряд электрона как бы «размазан» в определенной области пространства в виде электронного облака, распределение которого в пространстве определяется соответствующей математической функцией (называемой волновой функцией электрона или его молекулярной орбиталью (или атомной орбиталью, если его распределение определяют в атоме).

Выло показано, что не все электроны в молекуле одинаково существенны для ее химических свойств. Так, например, в молекуле с большим числом двойных связей, к которым относится подавляющее большинство соединений, играющих доминирующую роль в процессах жизнедеятельности, электроны можно разделить на два типа. К первому типу относятся σ-электроны, участвующие в образовании ординарных связей, ко второму - п-электроны, участвующие в образовании двойных связей. Первые образуют жесткий скелет молекулы и локализованы попарно между соседними атомами. Вторые образуют значительно более расплывчатое облако, охватывающее всю периферию молекулы. В таких молекулах все основные их свойства обусловлены п-электронами, которые более лабильны сравнительно с σ-электронами и поэтому с большей легкостью могут участвовать в различного рода процессах.

Каждый день мы пользуемся какими-нибудь предметами: берем их в руки, совершаем над ними любые манипуляции - переворачиваем, рассматриваем, в конце концов, ломаем. А вы никогда не задумывались о том, из чего состоят эти предметы? "Чего уж здесь думать? Из металла/дерева/пластика/ткани!" - недоуменно ответят многие из нас. Отчасти это правильный ответ. А из чего состоят эти материалы - металл, дерево, пластик, ткань и многие другие вещества? Сегодня мы и обсудим этот вопрос.

Молекула и атом: определение

У знающего человека ответ на него прост и банален: из атомов и молекул. Но некоторые люди озадачиваются и начинают сыпать вопросами: "Что такое атом и молекула? Как они выглядят?" и т.д., и т.п. Ответим на эти вопросы по порядку. Ну, во-первых, что такое атом и молекула? Скажем вам сразу, что эти определения - не одно и то же. И даже более того - это совершенно разные термины. Итак, атом - это самая маленькая часть химического элемента, которая является носителем его свойств, частица вещества мизерных массы и размеров. А молекула - это электрически нейтральная частица, которую образуют несколько соединенных атомов.

Что такое атом: строение

Атом состоит из электронной оболочки и (фото). В свою очередь ядро состоит из протонов и нейтронов, а оболочка - из электронов. В атоме протоны заряжены положительно, электроны - отрицательно, а нейтроны вообще не заряжены. Если число протонов соответствует то атом является электронейтральным, т.е. если мы прикоснемся к веществу, образованному из молекул с такими атомами, то не почувствуем ни малейшего электрического импульса. И даже сверхмощные ЭВМ его не уловят по причине отсутствия последнего. Но случается так, что протонов больше, чем электронов, и наоборот. Тогда такие атомы правильнее будет называть ионами. Если в нем больше протонов, то он электрически положительный, если же преобладают электроны - электрически отрицательный. В каждом определенном атоме есть строгое количество протонов, нейтронов и электронов. И его можно высчитать. Шаблон для решения задач по нахождению количества этих частиц выглядит так:

Хим. элемент - R (вставить название элемента)
Протоны (p) - ?
Электроны (е) - ?
Нейтроны (n) - ?
Решение:
р = порядковый № хим. элемента R в периодической системе им Д.И. Менделеева
е = р
n = А r (R) - № R

Что такое молекула: строение

Молекула - это наименьшая частица химического вещества, то есть она уже непосредственно входит в его состав. Молекула определенного вещества состоит из нескольких одинаковых или различных атомов. Особенности строения молекул зависят от физических свойств вещества, в котором они присутствуют. Молекулы состоят из электронов и атомов. Расположение последних можно узнать с помощью структурной формулы. позволяет определить ход химической реакции. Обычно они нейтральные (не имеют электрического заряда), и у них нет неспаренных электронов (все валентности являются насыщенными). Однако они могут быть и заряженными, тогда их правильное название - ионы. Также у молекул могут быть неспаренные электроны и ненасыщенные валентности - в этом случае их называют радикалами.

Заключение

Теперь вы знаете, что такое атом и Все без исключения вещества состоят из молекул, а последние, в свою очередь, построены из атомов. Физические свойства вещества определяют расположение и связь атомов и молекул в нем.