Ремонт Дизайн Мебель

Коррозия трубопроводов и водогрейных котлов. Гужулев Э.П. Водоподготовка и вводно-химические режимы в теплоэнергетике - файл n1.doc Признаки коррозионной агрессивности воды в котельных установках

Эта коррозия по размеру и интенсивности часто бывает более значительной и опасной, чем коррозия котлов во время их работы.

При оставлении воды в системах в зависимости от ее температуры и доступа воздуха могут встречаться самые разнообразные случаи проявления стояночной коррозии. Следует прежде всего отметить крайнюю нежелательность наличия воды в трубах агрегатов при нахождении их в резерве.

Если вода по тем или иным причинам остается в системе, то может наблюдаться сильная стояночная коррозия в паровом и особенно в водяном пространстве емкости (преимущественно по ватерлинии) при температуре воды 60—70°С. Поэтому на практике довольно часто наблюдается различная по интенсивности стояночная коррозия, несмотря на одинаковые режимы останова системы и качество содержащейся в них воды; аппараты со значительной тепловой аккумуляцией подвергаются более сильной коррозии, чем аппараты, имеющие размеры топки и поверхность нагрева, так как котловая вода в них быстрее охлаждается; температура ее становится ниже 60—70°С.

При температуре воды выше 85—90°С (например, при кратковременных остановах аппаратов) общая коррозия снижается, причем коррозия металла парового пространства, в котором наблюдается в этом случае повышенная конденсация паров, может превышать коррозию металла водяного пространства. Стояночная коррозия в паровом пространстве во всех случаях более равномерная, чем в водяном пространстве котла.

Развитию стояночной коррозии сильно способствует скапливающийся на поверхностях котла шлам, который обычно удерживает влагу. В связи с этим значительные коррозионные раковины часто обнаруживаются в агрегатах и трубах вдоль нижней образующей и на их концах, т. е. на участках наибольшего скопления шлама.

Способы консервации оборудования, находящегося в резерве

Для консервации оборудования могут быть применены следующие способы:

а) высушивание — удаление из агрегатов воды и влаги;

б) заполнение их растворами едкого натра, фосфата, силиката, нитрита натрия, гидразина;

в) заполнение технологической системы азотом.

Способ консервации следует выбирать в зависимости от характера и длительности простоя, а также от типа и конструктивных особенностей оборудования.

Простои оборудования по продолжительности можно разделить на две группы: кратковременные—не более 3 сут и длительные — более 3 сут.

Различают два вида кратковременных простоев:

а) плановые, связанные с выводом в резерв на выходные дни в связи с падением нагрузки или выводом в резерв на ночное время;

б) вынужденные — из-за выхода из строя труб или повреждений других узлов оборудования, для устранения которых не требуется более длительный останов.

В зависимости от цели длительные простои можно разделить на следующие группы: а) вывод оборудования в резерв; б) текущие ремонты; в) капитальные ремонты.

При кратковременных простоях оборудования необходимо использовать консервацию путем заполнения деаэрированной водой с поддержанием избыточного давления или газовый (азотный) способ. Если необходим аварийный останов, то единственно приемлемый способ — консервация азотом.

При выводе системы в резерв или длительном простое без выполнения ремонтных работ консервацию целесообразно вести путем заполнения раствором нитрита или силиката натрия. В этих случаях можно использовать и азотную консервацию, обязательно принимая меры для создания плотности системы с целью предотвращения чрезмерного расхода газа и непроизводительной работы азотной установки, а также создания безопасных условий при обслуживании оборудования.

Способы консервации путем создания избыточного давления, заполнения азотом можно использовать независимо от конструктивных особенностей поверхностей нагрева оборудования.

Для предотвращения стояночной коррозии металла во время капитального и текущего ремонтов применимы только способы консервации, позволяющие создать на поверхности металла защитную пленку, сохраняющую свойства в течение не менее 1—2 мес после слива консервирующего раствора, поскольку опорожнение и разгерметизация системы неизбежны. Срок действия защитной пленки на поверхности металла после обработки ее нитритом натрия может достигать 3 мес.

Способы консервации с использованием воды и растворов реагентов практически неприемлемы для защиты от стояночной коррозии промежуточных пароперегревателей котлов из-за трудностей, связанных с их заполнением и последующей отмывкой.

Способы консервации водогрейных и паровых котлов низкого давления, а также другого оборудования замкнутых технологических контуров тепло- и водоснабжения во многом отличаются от применяемых в настоящее время методов предупреждения стояночной коррозии на ТЭС. Ниже описываются основные способы предупреждения коррозии в режиме простаивания оборудования аппаратов подобных циркуляционных систем с учетом специфики их работы.

Упрощенные способы консервации

Эти способы целесообразно применять для мелких котлов. Они заключаются в полном удалении воды из котлов и размещении в них влагопоглотителей: прокаленного хлористого кальция, негашеной извести, силикагеля из расчета 1—2 кг на 1 м 3 объема.

Этот способ консервации пригоден при температурах помещения ниже и выше нуля. В помещениях, отапливаемых в зимнее время, может быть реализован один из контактных способов консервации. Он сводится к заполнению всего внутреннего объема агрегата щелочным раствором (NaOH, Na 3 P0 4 и др.), обеспечивающим полную устойчивость защитной пленки на поверхности металла даже при насыщении жидкости кислородом.

Обычно применяют растворы, содержащие от 1,5— 2 до 10 кг/м 3 NaOH или 5—20 кг/м 3 Na 3 P0 4 в зависимости от содержания нейтральный солей в исходной воде. Меньшие значения относятся к конденсату, большие — к воде, содержащей до 3000 мг/л нейтральных солей.

Коррозию можно предупредить также способом избыточного давления, при котором давление пара в остановленном агрегате постоянно поддерживается на уровне выше атмосферного давления, а температура воды остается выше 100°С, чем предотвращается доступ основного коррозионного агента — кислорода.

Важное условие эффективности и экономичности любого способа защиты — максимально возможная герметичность паро-водяной арматуры во избежание слишком быстрого снижения давления, потерь защитного раствора (или газа) или попадания влаги. Кроме того, во многих случаях полезна предварительная очистка поверхностей от различных отложений (солей, шлама, накипи).

При осуществлении различных способов защиты от стояночной коррозии необходимо иметь в виду следующее.

1. При всех видах консервации необходимо предварительное удаление (промывка) отложений легкорастворимых солей (см. выше) во избежание усиления стояночной коррозии на отдельных участках защищаемого агрегата. Обязательным является осуществление этого мероприятия при контактной консервации, иначе возможна интенсивная местная коррозия.

2. По аналогичным соображениям желательно удаление перед длительной консервацией всех видов нерастворимых отложений (шлама, накипи, оксидов железа).

3. При ненадежности арматуры необходимо отключение резервного оборудования от работающих агрегатов с помощью заглушек.

Просачивание пара и воды менее опасно при контактной консервации, но недопустимо при сухом и газовом методах защиты.

Выбор влагопоглотителей определяется сравнительной доступностью реагента и желательностью получения максимально возможной удельной влагоемкости. Наилучший влагопоглотитель — зерненый хлористый кальций. Негашеная известь значительно хуже хлористого кальция не только вследствие меньшей влагоемкости, но и быстрой потери ее активности. Известь поглощает из воздуха не только влагу, но и углекислоту, в результате чего она покрывается слоем углекислого кальция, препятствующего дальнейшему поглощению влаги.

Идентификация видов коррозии затруднена, и, следовательно, нередки ошибки при определении технологически и экономически оптимальных мер противодействия коррозии. Основные необходимые меры предпринимаются в соответствии с нормативными документами, где установлены пределы главных инициаторов коррозии.

ГОСТ 20995-75 «Котлы паровые стационарные давлением до 3,9 МПа. Показатели качества питательной воды и пара» нормирует показатели в питательной воде: прозрачность, то есть количество взвешенных примесей; общая жесткость, содержание соединений железа и меди - предотвращение накипеобразования и железо- и медноокисных отложений; значение рН - предотвращение щелочной и кислотной коррозии и также пенообразования в барабане котла; содержание кислорода - предотвращение кислородной коррозии; содержание нитритов - предотвращение нитритной коррозии; содержание нефтепродуктов - предотвращение пенообразования в барабане котла.

Значения норм определены ГОСТом в зависимости от давления в котле (следовательно, от температуры воды), от мощности локального теплового потока и от технологии водоподготовки.

При исследовании причин коррозии, прежде всего, необходимо проводить осмотр (где это доступно) мест разрушения металла, анализ условий работы котла в предаварийный период, анализ качества питательной воды, пара и отложений, анализ конструктивных особенностей котла.

При внешнем осмотре можно подозревать следующие виды коррозии.

Кислородная коррозия

: входные участки труб стальных экономайзеров; питательные трубопроводы при встрече с недостаточно обескислороженной (выше нормы) водой - «прорывы» кислорода при плохой деаэрации; подогреватели питательной воды; все влажные участки котла во время его остановки и непринятия мер по предотвращению поступления воздуха в котел, особенно в застойных участках, при дренировании воды, откуда трудно удалить конденсат пара или полностью залить водой, например вертикальные трубы пароперегревателей. Во время простоев коррозия усиливается (локализируется) в присутствии щелочи (менее 100 мг/л).

Кислородная коррозия редко (при содержании кислорода в воде, значительном превышающем норму, - 0,3 мг/л) проявляется в паросепарационных устройствах барабанов котлов и на стенке барабанов на границе уровня воды; в опускных трубах. В подъемных трубах коррозия не проявляется из-за деаэрирующего действия паровых пузырьков.

Вид и характер повреждения . Язвы различной глубины и диаметра, часто покрытые бугорками, верхняя корка которых - красноватые окислы железа (вероятно, гематит Fе 2 О 3). Свидетельство активной коррозии: под коркой бугорков - черный жидкий осадок, наверное, магнетит (Fе 3 О 4) в смеси с сульфатами и хлоридами. При затухшей коррозии под коркой - пустота, а дно язвы покрыто отложениями накипи и шлама.

При рН воды > 8,5 - язвы редкие, но более крупные и глубокие, при рН < 8,5 - встречаются чаще, но меньших размеров. Только вскрытие бугорков помогает интерпретировать бугорки не как поверхностные отложения, а как следствие коррозии.

При скорости воды более 2 м/с бугорки могут принять продолговатую форму в направлении движения струи.

. Магнетитные корки достаточно плотные и могли бы служить надежным препятствием для проникновения кислорода внутрь бугорков. Но они часто разрушаются в результате коррозионной усталости, когда циклично изменяется температура воды и металла: частые остановы и пуски котла, пульсирующее движение пароводяной смеси, расслоение пароводяной смеси на отдельные пробки пара и воды, следующие друг за другом.

Коррозия усиливается с ростом температуры (до 350 °С) и увеличением содержания хлоридов в котловой воде. Иногда коррозию усиливают продукты термического распада некоторых органических веществ питательной воды.

Рис. 1. Внешний вид кислородной коррозии

Щелочная (в более узком смысле - межкристаллитная) коррозия

Места коррозионного повреждения металла . Трубы в зонах теплового потока большой мощности (район горелок и напротив вытянутого факела) - 300-400 кВт/м 2 и где температура металла на 5-10 °С выше температуры кипения воды при данном давлении; наклонные и горизонтальные трубы, где слабая циркуляция воды; места под толстыми отложениями; зоны вблизи подкладных колец и в самих сварных швах, например, в местах приварки внутрибарабанных паросепарационных устройств; места около заклепок.

Вид и характер повреждения . Полусферические или эллиптические углубления, заполненные продуктами коррозии, часто включающие блестящие кристаллы магнетита (Fе 3 О 4). Большая часть углублений покрыта твердой коркой. На стороне труб, обращенных к топке, углубления могут соединяться, образуя так называемую коррозионную дорожку шириной 20-40 мм и длиной до 2-3 м.

Если корка недостаточно устойчива и плотна, то коррозия может привести - в условиях механического напряжения - к появлению трещин в металле, особенно около щелей: заклепки, вальцовочные соединения, места приварки паросепарационных устройств.

Причины коррозионного повреждения . При высоких температурах - более 200 °С - и большой концентрации едкого натра (NаОН) - 10 % и более - защитная пленка (корка) на металле разрушается:

4NаОН + Fе 3 О 4 = 2NаFеО 2 + Nа 2 FеО 2 + 2Н 2 О (1)

Промежуточный продукт NаFеО 2 подвергается гидролизу:

4NаFеО 2 + 2Н 2 О = 4NаОН + 2Fe 2 О 3 + 2Н 2 (2)

То есть в этой реакции (2) едкий натр восстанавливается, в реакциях (1), (2) не расходуется, а выступает в качестве катализатора.

Когда магнетит удален, то едкий натр и вода могут реагировать с железом непосредственно с выделением атомарного водорода:

2NаОН + Fе = Nа 2 FеО 2 + 2Н (3)

4Н 2 О + 3Fе = Fе 3 О 4 + 8Н (4)

Выделяющийся водород способен диффундировать внутрь металла и образовывать с карбидом железа метан (CH 4):

4Н + Fе 3 С = СН 4 + 3Fе (5)

Возможно также объединение атомарного водорода в молекулярный (Н + Н = Н 2).

Метан и молекулярный водород не могут проникать внутрь металла, они скапливаются на границах зерен и при наличии трещин расширяют и углубляют их. Кроме того, эти газы препятствуют образованию и уплотнению защитных пленок.

Концентрированный раствор едкого натра образуется в местах глубокого упаривания котловой воды: плотные накипные отложения солей (вид подшламовой коррозии); кризис пузырькового кипения, когда образуется устойчивая паровая пленка над металлом - там металл почти не повреждается, но по краям пленки, где идет активное испарение, едкий натр концентрируется; наличие щелей, где идет испарение, отличное от испарения во всем объеме воды: едкий натр испаряется хуже, чем вода, не размывается водой и накапливается. Действуя на металл, едкий натр образует на границах зерен щели, направленные внутрь металла (вид межкристаллитной коррозии - щелевая).

Межкристаллитная коррозия под влиянием щелочной котловой воды чаще всего концентрируется в барабане котла.


Рис. 3. Межкристаллитная коррозия: а - микроструктура металла до коррозии, б - микроструктура на стадии коррозии, образование трещин по границе зерен металла

Такое коррозионное воздействие на металл возможно только при одновременном наличии трех факторов:

  • местные растягивающие механические напряжения, близкие или несколько превышающие предел текучести, то есть 2,5 МН/мм 2 ;
  • неплотные сочленения деталей барабана (указаны выше), где может происходить глубокое упаривание котловой воды и где накапливающийся едкий натр растворяет защитную пленку оксидов железа (концентрация NаОН более 10 %, температура воды выше 200 °С и - особенно - ближе к 300 °С). Если котел эксплуатируется с давлением меньшим, чем паспортное (например, 0,6-0,7 МПа вместо 1,4 МПа), то вероятность этого вида коррозии уменьшается;
  • неблагоприятное сочетание веществ в котловой воде, в которой отсутствуют необходимые защитные концентрации ингибиторов этого вида коррозии. В качестве ингибиторов могут выступать натриевые соли: сульфаты, карбонаты, фосфаты, нитраты, сульфитцеллюлозный щелок.


Рис. 4. Внешний вид межкристаллитной коррозии

Коррозионные трещины не развиваются, если соблюдается отношение:

(Nа 2 SО 4 + Nа 2 СО 3 + Nа 3 РО 4 + NаNО 3)/(NaOH) ≥ 5, 3 (6)

где Nа 2 SО 4 , Nа 2 СО 3 , Nа 3 РО 4 , NаNO 3 , NaOH - содержание соответственно натрий сульфата, натрий карбоната, натрий фосфата, натрий нитрата и натрий гидроксида, мг/кг.

В изготавливаемых в настоящее время котлах по крайней мере одно из указанных условий возникновения коррозии отсутствует.

Наличие в котловой воде кремниевых соединений также может усиливать межкристаллитную коррозию.

NаСl в данных условиях - не ингибитор коррозии. Выше было показано: ионы хлора (Сl -) - ускорители коррозии, из-за большой подвижности и малых размеров они легко проникают через защитные окисные пленки и дают с железом хорошо растворимые соли (FеСl 2 , FеСl 3) вместо малорастворимых оксидов железа.

В воде котельных традиционно контролируют значения общей минерализации, а не содержание отдельных солей. Вероятно, по этой причине было введено нормирование не по указанному соотношению (6), а по значению относительной щелочности котловой воды:

Щ кв отн = Щ ов отн = Щ ов 40 100/S ов ≤ 20, (7)

где Щ кв отн - относительная щелочность котловой воды, %; Щ ов отн - относительная щелочность обработанной (добавочной) воды, %; Щ ов - общая щелочность обработанной (добавочной) воды, ммоль/л; S ов - минерализация обработанной (добавочной) воды (в том числе - содержание хлоридов), мг/л.

Общая щелочность обработанной (добавочной) воды может быть принята равной, ммоль/л:

  • после натрий-катионирования - общей щелочности исходной воды;
  • после водород-натрий-катионирования параллельного - (0,3-0,4), или последовательного с «голодной» регенерацией водород-катионитного фильтра - (0,5-0,7);
  • после натрий-катионирования с подкислением и натрий-хлор-ионирования - (0,5-1,0);
  • после аммоний-натрий-катионирования - (0,5-0,7);
  • после известкования при 30-40 °С - (0,35-1,0);
  • после коагулирования - (Щ о исх - Д к), где Щ о исх - общая щелочность исходной воды, ммоль/л; Д к - доза коагулянта, ммоль/л;
  • после содоизвесткования при 30-40 °С - (1,0-1,5), а при 60-70 °С - (1,0-1,2).

Значения относительной щелочности котловой воды по нормам Ростехнадзора принимаются, %, не более:

  • для котлов с клепаными барабанами - 20;
  • для котлов со сварными барабанами и ввальцованными в них трубами - 50;
  • для котлов со сварными барабанами и приваренными к ним трубами - любое значение, не нормируется.


Рис. 4. Результат межкристаллитной коррозии

По нормам Ростехнадзора Щ кв отн - один из критериев безопасной работы котлов. Правильнее проверять критерий потенциальной щелочной агрессивности котловой воды, который не учитывает содержание иона хлора:

К щ = (S ов - [Сl - ])/40 Щ ов, (8)

где К щ - критерий потенциальной щелочной агрессивности котловой воды; S ов - минерализация обработанной (добавочной) воды (в том числе - содержание хлоридов), мг/л; Сl - - содержание хлоридов в обработанной (добавочной) воде, мг/л; Щ ов - общая щелочность обработанной (добавочной) воды, ммоль/л.

Значение К щ можно принимать:

  • для котлов с клепаными барабанами давлением более 0,8 МПа ≥ 5;
  • для котлов со сварными барабанами и ввальцованными в них трубами давлением более 1,4 МПа ≥ 2;
  • для котлов со сварными барабанами и приваренными к ним трубами, а также для котлов со сварными барабанами и ввальцованными в них трубами давлением до 1,4 МПа и котлов с клепаными барабанами давлением до 0,8 МПа - не нормировать.

Подшламовая коррозия

Под этим названием объединяют несколько разных видов коррозии (щелочная, кислородная и др.). Накопление в разных зонах котла рыхлых и пористых отложений, шлама вызывает коррозию металла под шламом. Главная причина: загрязнение питательной воды окислами железа.

Нитритная коррозия

. Экранные и кипятильные трубы котла на стороне, обращенной в топку.

Вид и характер повреждений . Редкие, резко ограниченные крупные язвы.

. При наличии в питательной воде нитритных ионов (NО - 2) более 20 мкг/л, температуре воды более 200 °С, нитриты служат катодными деполяризатрами электрохимической коррозии, восстанавливаясь до НNО 2 , NО, N 2 (см. выше).

Пароводяная коррозия

Места коррозионных повреждений металла . Выходная часть змеевиков пароперегревателей, паропроводы перегретого пара, горизонтальные и слабонаклонные парогенерирующие трубы на участках плохой циркуляции воды, иногда по верхней образующей выходных змеевиков кипящих водяных экономайзеров.

Вид и характер повреждений . Налеты плотных черных оксидов железа (Fе 3 О 4), прочно сцепленных с металлом. При колебаниях температуры сплошность налета (корки) нарушается, чешуйки отваливаются. Равномерное утончение металла с отдулинами, продольными трещинами, разрывами.

Может идентифицироваться в качестве подшламовой коррозии: в виде глубоких язв с нечетко отграниченными краями, чаще возле выступающих внутрь трубы сварных швов, где скапливается шлам.

Причины коррозионных повреждений :

  • омывающая среда - пар в пароперегревателях, паропроводах, паровые «подушки» под слоем шлама;
  • температура металла (сталь 20) более 450 °С, тепловой поток на участок металла - 450 кВт/м 2 ;
  • нарушение топочного режима: зашлаковывание горелок, повышенное загрязнение труб внутри и снаружи, неустойчивое (вибрационное) горение, удлинение факела по направлению к трубам экранов.

В результате: непосредственное химическое взаимодействие железа с водяным паром (см. выше).

Микробиологическая коррозия

Вызывается аэробными и анаэробными бактериями, появляется при температурах 20-80 °С.

Места повреждений металла . Трубы и емкости до котла с водой указанной температуры.

Вид и характер повреждений . Бугорки разных размеров: диаметр от нескольких миллиметров до нескольких сантиметров, редко - несколько десятков сантиметров. Бугорки покрыты плотными оксидами железа - продукт жизнедеятельности аэробных бактерий. Внутри - порошок и суспензия черного цвета (сульфид железа FеS) - продукт сульфатвосстанавливающих анаэробных бактерий, под черным образованием - круглые язвы.

Причины повреждений . В природной воде всегда присутствуют сульфаты железа, кислород и разные бактерии.

Железобактерии в присутствии кислорода образуют пленку оксидов железа, под ней анаэробные бактерии восстанавливают сульфаты до сульфида железа (FеS) и сероводорода (Н 2 S). В свою очередь, сероводород дает старт образованию сернистой (очень нестойкой) и серной кислот, и металл корродирует.

На коррозию котла этот вид оказывает косвенное влияние: поток воды при скорости 2-3 м/с срывает бугорки, уносит их содержимое в котел, увеличивая накопление шлама.

В редких случаях возможно протекание этой коррозии в самом котле, если во время длительной остановки котла в резерв он заполняется водой с температурой 50-60 о С, и температура поддерживается за счет случайных прорывов пара из соседних котлов.

«Хелатная» коррозия

Места коррозионного повреждения . Оборудование, в котором пар отделяется от воды: барабан котла, паросепарационные устройства в барабане и вне его, также - редко - в трубопроводах питательной воды и экономайзере.

Вид и характер повреждения . Поверхность металла - гладкая, но если среда движется с большой скоростью, то корродированная поверхность - негладкая, имеет подковообразные углубления и «хвосты», ориентированные в направлении движения. Поверхность покрыта тонкой матовой или черной блестящей пленкой. Явных отложений нет, нет и продуктов коррозии, потому что «хелат» (специально вводимые в котел органические соединения полиаминов) уже прореагировал.

В присутствии кислорода, что в нормально работающем котле случается редко, коррозированная поверхность - «взбодренная»: шероховатости, островки металла.

Причины коррозионного повреждения . Механизм действия «хелата» описан ранее («Промышленные и отопительные котельные и мини-ТЭЦ», 1(6)΄ 2011, с.40).

«Хелатная» коррозия возникает при передозировке «хелата», но и при нормальной дозе возможна, так как «хелат» концентрируется в зонах, где идет интенсивное испарение воды: пузырьковое кипение заменяется пленчатым. В паросепарационных устройствах бывают случаи особенно разрушительного действия «хелатной» коррозии из-за больших турбулентных скоростей воды и пароводяной смеси.

Все описанные коррозионные повреждения могут иметь синэнергетический эффект, так что суммарный ущерб от совместного действия разных факторов коррозии может превысить сумму ущерба от отдельных видов коррозии.

Как правило, действие коррозионных агентов усиливает нестабильный тепловой режим котла, что вызывает коррозионную усталость и возбуждает термоусталостную коррозию: число пусков из холодного состояния - более 100, общее число пусков - более 200. Так как эти виды разрушений металла проявляются редко, то трещины, разрыв труб имеют вид, идентичный поражениям металла от разных видов коррозии.

Обычно для идентификации причины разрушения металла требуются дополнительно металлографические исследования: рентгенография, ультразвук, цветная и магнито-порошковая дефектоскопия.

Разными исследователями были предложены программы диагностирования видов коррозионных повреждений котельных сталей. Известны программа ВТИ (А.Ф. Богачев с сотрудниками) - в основном для энергетических котлов высокого давления, и разработки объединения «Энергочермет» - в основном для энергетических котлов низкого и среднего давления и котлов-утилизаторов.

  • Глава четвертая Предварительная очистка воды и физико-химические процессы
  • 4.1. Очистка воды методом коагуляции
  • 4.2. Осаждение методами известкования и содоизвесткования
  • Глава пятая Фильтрование воды на механических фильтрах
  • Фильтрующие материалы и основные характеристики структуры фильтрованных слоев
  • Глава шестая Обессоливание воды
  • 6.1. Физико-химические основы ионного обмена
  • 6.2. Ионообменные материалы и их характеристики
  • 6.3. Технология ионного обмена
  • 6.4. Малосточные схемы ионитных водоподготовок
  • 6.5. Автоматизация водоподготовительных установок
  • 6.6. Перспективные технологии водоочистки
  • 6.6.1. Противоточная технология ионирования
  • Назначение и область применения
  • Основные принципиальные схемы впу
  • Глава седьмая Термический метод очистки воды
  • 7.1. Метод дистилляции
  • 7.2. Предотвращение накипеобразования в испарительных установках физическими методами
  • 7.3. Предотвращение накипеобразования в испарительных установках химическими, конструктивными и технологическими методами
  • Глава восьмая Очистка высокоминерализованных вод
  • 8.1. Обратный осмос
  • 8.2. Электродиализ
  • Глава девятая Водоподготовка в тепловых сетях с непосредственным водозабором
  • 9.1. Основные положения
  • Нормы органолептических показателей воды
  • Нормы бактериологических показателей воды
  • Показатели пдк (нормы) химического состава воды
  • 9.2. Подготовка добавочной воды методом н-катионирования с голодной регенерацией
  • 9.3. Снижение карбонатной жесткости (щелочности) добавочной воды методом подкисления
  • 9.4. Декарбонизация воды методом известкования
  • 9.6. Магнитная противонакипная обработка добавочной воды
  • 9.7. Подготовка воды для закрытых тепловых сетей
  • 9.8. Подготовка воды для местных систем горячего водоснабжения
  • 9.9. Подготовка воды для отопительных систем теплоснабжения
  • 9.10. Технология обработки воды комплексонами в системах теплоснабжения
  • Глава десятая Очистка воды от растворенных газов
  • 10.1. Общие положения
  • 10.2. Удаление свободной углекислоты
  • Высота слоя в метрах насадки из колец Рашига определяется из уравнения:
  • 10.3. Удаление кислорода физико-химическими методами
  • 10.4. Деаэрация в деаэраторах атмосферного и пониженного давления
  • 10.5. Химические методы удаления газов из воды
  • Глава одиннадцатая Стабилизационная обработка воды
  • 11.1. Общие положения
  • 11.2. Стабилизация воды подкислением
  • 11.3. Фосфатирование охлаждающей воды
  • 11.4. Рекарбонизация охлаждающей воды
  • Глава двенадцатая
  • Применение окислителей для борьбы
  • С биологическим обрастанием теплообменников
  • И обеззараживания воды
  • Глава тринадцатая Расчет механических и ионообменных фильтров
  • 13.1. Расчет механических фильтров
  • 13.2. Расчет ионитных фильтров
  • Глава четырнадцатая Примеры расчета водоподготовительных установок
  • 14.1. Общие положения
  • 14.2. Расчет установки химического обессоливания с параллельным включением фильтров
  • 14.3. Расчет декарбонизатора с насадкой из колец Рашига
  • 14.4. Расчет фильтров смешанного действия (фсд)
  • 14.5. Расчет обессоливающей установки с блочным включением фильтров (расчет «цепочек»)
  • Особые условия и рекомендации
  • Расчет н-катионитных фильтров 1-й ступени ()
  • Расчет анионитных фильтров 1-й ступени (а1)
  • Расчет н-катионитных фильтров 2-й ступени ()
  • Расчет анионитных фильтров 2-й ступени (а2)
  • 14.6. Расчет электродиализной установки
  • Глава пятнадцатая краткие технологии очистки конденсатов
  • 15.1. Электромагнитный фильтр (эмф)
  • 15.2. Особенности осветления турбинных и производственных конденсатов
  • Глава шестнадцатая Краткие технологии очистки сточных вод теплоэнергетики
  • 16.1. Основные понятия о сточных водах тэс и котельных
  • 16.2. Воды химводоочисток
  • 16.3. Отработавшие растворы от промывок и консервации теплосилового оборудования
  • 16.4. Теплые воды
  • 16.5.Воды гидрозолоудаления
  • 16.6. Обмывочные воды
  • 16.7. Нефтезагрязненные воды
  • Часть II. Водно-химический режим
  • Глава вторая Химический контроль – основа водно-химического режима
  • Глава третья коррозия металла паросилового оборудования и методы борьбы с ней
  • 3.1. Основные положения
  • 3.2. Коррозия стали в перегретом паре
  • 3.3. Коррозия тракта питательной воды и конденсатопроводов
  • 3.4. Коррозия элементов парогенераторов
  • 3.4.1. Коррозия парообразующих труб и барабанов парогенераторов во время их эксплуатации
  • 3.4.2. Коррозия пароперегревателей
  • 3.4.3. Стояночная коррозия парогенераторов
  • 3.5. Коррозия паровых турбин
  • 3.6. Коррозия конденсаторов турбин
  • 3.7. Коррозия оборудования подпиточного и сетевого трактов
  • 3.7.1. Коррозия трубопроводов и водогрейных котлов
  • 3.7.2. Коррозия трубок теплообменных аппаратов
  • 3.7.3. Оценка коррозионного состояния действующих систем горячего водоснабжения и причины коррозии
  • 3.8. Консервация теплоэнергетического оборудования и теплосетей
  • 3.8.1. Общее положение
  • 3.8.2. Способы консервации барабанных котлов
  • 3.8.3. Способы консервации прямоточных котлов
  • 3.8.4. Способы консервации водогрейных котлов
  • 3.8.5. Способы консервации турбоустановок
  • 3.8.6. Консервация тепловых сетей
  • 3.8.7. Краткие характеристики применяемых химических реагентов для консервации и меры предосторожности при работе с ними Водный раствор гидразингидрата n2н4·н2о
  • Водный раствор аммиака nh4(oh)
  • Трилон б
  • Тринатрийфосфат Na3po4·12н2о
  • Едкий натр NaOh
  • Силикат натрия (жидкое стекло натриевое)
  • Гидроксид кальция (известковый раствор) Са(он)2
  • Контактный ингибитор
  • Летучие ингибиторы
  • Глава четвертая отложения в энергетическом оборудовании и способы устранения
  • 4.1. Отложения в парогенераторах и теплообменниках
  • 4.2. Состав, структура и физические свойства отложений
  • 4.3. Образование отложений на внутренних поверхностях нагрева парогенераторов с многократной циркуляцией и теплообменников
  • 4.3.1. Условия образования твердой фазы из солевых растворов
  • 4.3.2. Условия образования щелочно-земельных накипей
  • 4.3.3. Условия образования ферро - и алюмосиликатных накипей
  • 4.3.4. Условия образования железоокисных и железофосфатных накипей
  • 4.3.5. Условия образования медных накипей
  • 4.3.6. Условия образования отложений легкорастворимых соединений
  • 4.4. Образование отложений на внутренних поверхностях прямоточных парогенераторов
  • 4.5. Образование отложений на охлаждаемых поверхностях конденсаторов и по такту охлаждающей воды
  • 4.6. Отложения по паровому тракту
  • 4.6.1. Поведение примесей пара в пароперегревателе
  • 4.6.2. Поведение примесей пара в проточной части паровых турбин
  • 4.7. Образование отложений в водогрейном оборудовании
  • 4.7.1. Основные сведения об отложениях
  • 4.7.2. Организация химического контроля и оценка интенсивности накипеобразования в водогрейном оборудовании
  • 4.8. Химические очистки оборудования тэс и котельных
  • 4.8.1. Назначение химических очисток и выбор реагентов
  • 4.8.2. Эксплуатационные химические очистки паровых турбин
  • 4.8.3. Эксплуатационные химические очистки конденсаторов и сетевых подогревателей
  • 4.8.4. Эксплуатационные химические очистки водогрейных котлов Общие положения
  • Технологические режимы очистки
  • 4.8.5. Важнейшие реагенты для удаления отложений из водогрейных и паровых котлов низкого и среднего давлений
  • Глава пятая водно-химический режим (вхр) в энергетике
  • 5.1. Водно-химические режимы барабанных котлов
  • 5.1.1. Физико-химическая характеристика внутрикотловых процессов
  • 5.1.2. Методы коррекционной обработки котловой и питательной воды
  • 5.1.2.1. Фосфатная обработка котловой воды
  • 5.1.2.2. Амминирование и гидразинная обработка питательной воды
  • 5.1.3. Загрязнения пара и способы их удаления
  • 5.1.3.1. Основные положения
  • 5.1.3.2. Продувка барабанных котлов тэс и котельных
  • 5.1.3.3. Ступенчатое испарение и промывка пара
  • 5.1.4. Влияние водно-химического режима на состав и структуру отложений
  • 5.2. Водно-химические режимы блоков скд
  • 5.3. Водно-химический режим паровых турбин
  • 5.3.1. Поведение примесей в проточной части турбин
  • 5.3.2. Водно-химический режим паровых турбин высоких и сверхвысоких давлений
  • 5.3.3. Водно-химический режим турбин насыщенного пара
  • 5.4. Водный режим конденсаторов турбин
  • 5.5. Водно-химический режим тепловых сетей
  • 5.5.1. Основные положения и задачи
  • 5.5.3. Повышение надежности водно-химического режима теплосетей
  • 5.5.4. Особенности водно-химического режима при эксплуатации водогрейных котлов, сжигающих мазутное топливо
  • 5.6. Проверка эффективности проводимых на тэс, котельных водно-химических режимов
  • Часть III Случаи аварийных ситуаций в теплоэнергетике из-за нарушений водно-химического режима
  • Оборудование водоподготовительных установок (впу) останавливает котельную и заводы
  • Карбонат кальция задает загадки…
  • Магнитная обработка воды перестала предотвращать карбонатно-кальциевое накипеобразование. Почему?
  • Как предупредить отложения и коррозию в небольших водогрейных котлах
  • Какие соединения железа осаждаются в водогрейных котлах?
  • В трубках псв образуются отложения из силиката магния
  • Как взрываются деаэраторы?
  • Как спасти трубопроводы умягченной воды от коррозии?
  • Соотношение концентраций ионов в исходной воде определяет агрессивность котловой воды
  • Почему «горели» трубы только заднего экрана?
  • Как удалять из экранных труб органо-железистые отложения?
  • Химические «перекосы» в котловой воде
  • Эффективна ли периодическая продувка котлов в борьбе с железоокисным преобразованием?
  • Свищи в трубах котла появились до начала его эксплуатации!
  • Почему прогрессировала стояночная коррозия в самых «молодых» котлах?
  • Почему разрушались трубы в поверхностном пароохладителе?
  • Чем опасен котлам конденсат?
  • Основные причины аварийности тепловых сетей
  • Проблемы котельных птицепрома Омского региона
  • Почему не работали цтп в Омске
  • Причина высокой аварийности систем теплоснабжения в Советском районе г. Омска
  • Почему высока коррозионная аварийность на новых трубопроводах теплосети?
  • Сюрпризы природы? Белое море наступает на Архангельск
  • Река Омь угрожает аварийным остановом теплоэнергетического и нефтехимического комплексов г. Омска?
  • – Увеличена дозировка коагулянта на предочистку;
  • Выписка из «Правил технической эксплуатации электрических станций и сетей», утв. 19.06.2003
  • Требования к приборам ахк (Автоматика химического контроля)
  • Требования к средствам лабораторного контроля
  • Сравнение технических характеристик приборов различных фирм производителей
  • 3.2. Коррозия стали в перегретом паре

    Система железо – водяной пар термодинамически неустойчива. Взаимодействие этих веществ может протекать с образованием магнетита Fe 3 O 4 или вюстита FeO:

    ;

    Анализ реакций (2.1) – (2.3) свидетельствует о своеобразном разложении водяного пара при взаимодействии с металлом с образованием молекулярного водорода, который не является следствием собственно термической диссоциации водяного пара. Из уравнений (2.1) – (2.3) следует, что при коррозии сталей в перегретом паре в отсутствие кислорода на поверхности может образоваться только Fe 3 О 4 или FeO.

    При наличии в перегретом паре кислорода (например, в нейтральных водных режимах, с дозированием кислорода в конденсат) в перегревательной зоне возможно образование гематита Fe 2 O 3 за счет доокисления магнетита.

    Считают, что коррозия в паре, начиная с температуры 570 °С, является химической. В настоящее время предельная температура перегрева для всех котлов снижена до 545 °С, и, следовательно, в пароперегревателях происходит электрохимическая коррозия. Выходные участки первичных пароперегревателей выполняют из коррозионно-стойкой аустенитной нержавеющей стали, выходные участки промежуточных пароперегревателей, имеющие ту же конечную температуру перегрева (545 °С), – из перлитных сталей. Поэтому коррозия промежуточных пароперегревателей обычно проявляется в сильной степени.

    В результате воздействия пара на сталь на ее первоначально чистой поверхности постепенно образуется так называемый топотактический слой, плотно сцепленный с самим металлом и потому защищающий его от коррозии. С течением времени на этом слое нарастает второй так называемый эпитактический слой. Оба эти слоя для уровня температур пара до 545 °С представляют собой магнетит, но структура их не одинакова – эпитактический слой крупнозернист и не защищает от коррозии.

    Скорость разложения пара

    мгН 2 /(см 2 ч)

    Рис. 2.1. Зависимость скорости разложения перегретого пара

    от температуры стенки

    Влиять на коррозию перегревательных поверхностей методами водного режима не удается. Поэтому основная задача водно-химического режима собственно пароперегревателей заключается в систематическом наблюдении за состоянием металла пароперегревателей с целью недопущения разрушения топотактического слоя. Это может происходить за счет попадания в пароперегреватели и осаждения в них отдельных примесей, особенно солей, что возможно, например, в результате резкого повышения уровня в барабане котлов высокого давления. Связанные с этим отложения солей в пароперегревателе могут привести как к повышению температуры стенки, так и к разрушению защитной оксидной топотактической пленки, о чем можно судить по резкому возрастанию скорости разложения пара (рис. 2.1).

    3.3. Коррозия тракта питательной воды и конденсатопроводов

    Значительная часть коррозионных повреждений оборудования тепловых электростанций приходится на долю тракта питательной воды, где металл находится в наиболее тяжелых условиях, причиной чего является коррозионная агрессивность соприкасающихся с ним химически обработанной воды, конденсата, дистиллята и смеси их. На паротурбинных электростанциях основным источником загрязнения питательной воды соединениями меди является аммиачная коррозия конденсаторов турбин и регенеративных подогревателей низкого давления, трубная система которых выполнена из латуни.

    Тракт питательной воды паротурбинной электростанции можно разделить на два основных участка: до термического деаэратора и после него, причем условия протекания в них коррозии резко различны. Элементы первого участка тракта питательной воды, расположенные до деаэратора, включают трубопроводы, баки, конденсатные насосы, конденсатопроводы и другое оборудование. Характерной особенностью коррозии этой части питательного тракта является отсутствие возможности истощения агрессивных агентов, т. е. угольной кислоты и кислорода, содержащихся в воде. Вследствие непрерывного поступления и движения новых порций воды по тракту происходит постоянное пополнение их убыли. Непрерывное удаление части продуктов реакции железа с водой и приток свежих порций агрессивных агентов создают благоприятные условия для интенсивного протекания коррозионных процессов.

    Источником появления кислорода в конденсате турбин являются присосы воздуха в хвостовой части турбин и в сальниках конденсатных насосов. Подогрев воды, содержащей О 2 и СО 2 в поверхностных подогревателях, расположенных на первом участке питательного тракта, до 60–80 °С и выше приводит к серьезным коррозионным повреждениям латунных труб. Последние становятся хрупкими, и нередко латунь после нескольких месяцев работы приобретает губчатую структуру в результате ярко выраженной избирательной коррозии.

    Элементы второго участка тракта питательной воды – от деаэратора до парогенератора – включают питательные насосы и магистрали, регенеративные подогреватели и экономайзеры. Температура воды на этом участке в результате последовательного подогрева воды в регенеративных подогревателях и водяных экономайзерах приближается к температуре котловой воды. Причиной коррозии оборудования, относящегося к этой части тракта, является главным образом воздействие на металл растворенной в питательной воде свободной углекислоты, источником которой является добавочная химически обработанная вода. При повышенной концентрации ионов водорода (рН < 7,0), обусловленной наличием растворенной углекислоты и значительным подогревом воды, процесс коррозии на этом участке питательного тракта развивается преимущественно с выделением водорода. Коррозия имеет сравнительно равномерный характер.

    При наличии оборудования, изготовленного из латуни (подогреватели низкого давления, конденсаторы), обогащение воды соединениями меди по пароконденсатному тракту протекает в присутствии кислорода и свободного аммиака. Увеличение растворимости гидратированной окиси меди происходит за счет образования медно-аммиачных комплексов, например Сu(NH 3) 4 (ОН) 2 . Эти продукты коррозии латунных трубок подогревателей низкого давления начинают разлагаться на участках тракта регенеративных подогревателей высокого давления (п. в. д.) с образованием менее растворимых окислов меди, частично осаждающихся на поверхности трубок п. в. д. Медистые отложения на трубках п. в. д. способствуют их коррозии во время работы и длительной стоянки оборудования без консервации.

    При недостаточно глубокой термической деаэрации питательной воды язвенная коррозия наблюдается преимущественно на входных участках экономайзеров, где кислород выделяется вследствие заметного повышения температуры питательной воды, а также в застойных участках питательного тракта.

    Теплоиспользующая аппаратура потребителей пара и трубопроводы, по которым возвращается производственный конденсат на ТЭЦ, подвергаются коррозии под действием содержащихся в нем кислорода и угольной кислоты. Появление кислорода объясняется контактом конденсата с воздухом в открытых баках (при открытой схеме сбора конденсата) и подсосами через неплотности в оборудовании.

    Основными мероприятиями для предотвращения коррозии оборудования, расположенного на первом участке тракта питательной воды (от водоподготовительной установки до термического деаэратора), являются:

    1) применение защитных противокоррозионных покрытий поверхностей водоподготовительного оборудования и бакового хозяйства, которые омываются растворами кислых реагентов или коррозионно-агрессивными водами с использованием резины, эпоксидных смол, лаков на перхлорвиниловой основе, жидкого найрита и силикона;

    2) применение кислотостойких труб и арматуры, изготовленных из полимерных материалов (полиэтилена, полиизобутилена, полипропилена и др.) либо стальных труб и арматуры, футерованных внутри защитными покрытиями, наносимыми методом газопламенного напыления;

    3) применение труб теплообменных аппаратов из коррозионно-стойких металлов (красная медь, нержавеющая сталь);

    4) удаление свободной углекислоты из добавочной химически обработанной воды;

    5) постоянный вывод неконденсирующихся газов (кислорода и угольной кислоты) из паровых камер регенеративных подогревателей низкого давления, охладителей и подогревателей сетевой воды и быстрый отвод образующегося в них конденсата;

    6) тщательное уплотнение сальников конденсатных насосов, арматуры и фланцевых соединений питательных трубопроводов, находящихся под вакуумом;

    7) обеспечение достаточной герметичности конденсаторов турбин со стороны охлаждающей воды и воздуха и контроль за присосами воздуха с помощью регистрирующих кислородомеров;

    8) оснащение конденсаторов специальными дегазационными устройствами с целью удаления кислорода из конденсата.

    Для успешной борьбы с коррозией оборудования и трубопроводов, расположенных на втором участке тракта питательной воды (от термических деаэраторов до парогенераторов), применяются следующие мероприятия:

    1) оснащение ТЭС термическими деаэраторами, выдающими при любых режимах работы деаэрированную воду с остаточным содержанием кислорода и углекислоты, не превышающим допустимые нормы;

    2) максимальный вывод неконденсирующихся газов из паровых камер регенеративных подогревателей высокого давления;

    3) применение коррозионно-стойких металлов для изготовления соприкасающихся с водой элементов питательных насосов;

    4) противокоррозионная защита питательных и дренажных баков путем нанесения неметаллических покрытий, стойких при температурах до 80–100 °С, например асбовинила (смеси лака этиноль с асбестом) или лакокрасочных материалов на основе эпоксидных смол;

    5) подбор коррозионно-стойких конструкционных металлов, пригодных для изготовления труб регенеративных подогревателей высокого давления;

    6) постоянная обработка питательной воды щелочными реагентами с целью поддержания заданного оптимального значения рН питательной воды, при котором подавляется углекислотная коррозия и обеспечивается достаточная прочность защитной пленки;

    7) постоянная обработка питательной воды гидразином для связывания остаточного кислорода после термических деаэраторов и создания ингибиторного эффекта торможения перехода соединений железа с поверхности оборудования в питательную воду;

    8) герметизация баков питательной воды путем организации так называемой закрытой системы, чтобы предотвратить попадание кислорода с питательной водой в экономайзеры парогенераторов;

    9) осуществление надежной консервации оборудования тракта питательной воды во время его простоя в резерве.

    Эффективным методом снижения концентрации продуктов коррозии в конденсате, возвращаемом на ТЭЦ потребителями пара, является введение в отборный пар турбин, направляемый потребителям, пленкообразующих аминов – октадециламина или его заменителей. При концентрации этих веществ в паре, равной 2–3 мг/дм 3 , можно снизить содержание окислов железа в производственном конденсате в 10–15 раз. Дозирование водной эмульсии полиаминов с помощью насоса-дозатора не зависит от концентрации в конденсате угольной кислоты, так как действие их не связано с нейтрализующими свойствами, а основано на способности этих аминов образовывать на поверхности стали, латуни и других металлов нерастворимые и несмачиваемые водой пленки.

  • Введение

    Корро́зия (от лат. corrosio - разъедание) - это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это - разрушение любого материала - будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример - кислородная коррозия железа в воде:

    4Fe + 2Н 2 О + ЗО 2 = 2(Fe 2 O 3 Н 2 О)

    В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозии полимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

    Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых она протекает. Поэтому нет единой и всеобъемлющей классификации встречающихся случаев коррозии. Главная классификация производится по механизму протекания процесса. Различаются два вида: химическую коррозию и электрохимическую коррозию. В данном реферате подробно рассматривается химическая коррозия на примере судовых котельных установках малых и больших мощностей.

    Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых она протекает. Поэтому нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

    По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

    1) -Газовая коррозия

    2) -Коррозия в неэлектролитах

    3) -Атмосферная коррозия

    4) -Коррозия в электролитах

    5) -Подземная коррозия

    6) -Биокоррозия

    7) -Коррозия блуждающим током.

    По условиям протеканию коррозионного процесса различаются следущие виды:

    1) -Контактная коррозия

    2) -Щелевая коррозия

    3) -Коррозия при неполном погружении

    4) -Коррозия при полном погружении

    5) -Коррозия при переменном погружении

    6) -Коррозия при трении

    7) -Коррозия под напряжением.

    По характеру разрушения:

    Сплошная коррозия, охватывающая всю поверхность:

    1) -равномерная;

    2) -неравномерная;

    3) -избирательная.

    Локальная(местная) коррозия, охватывающая отдельные участки:

    1) -пятнами;

    2) -язвенная;

    3) -точечная(или питтинг);

    4) -сквозная;

    5) -межкристаллитная.

    1. Химическая коррозия

    Представим себе металл в процессе производства металлического проката на металлургическом заводе: по клетям прокатного стана движется раскаленная масса. Во все стороны от нее разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины – продукта химической коррозии, возникающего в результате взаимодействия металла с кислородом воздуха. Такой процесс самопроизвольного разрушения металла из-за непосредственного взаимодействия частиц окислителя и окисляемого металла, называется химической коррозией.

    Химическая коррозия - взаимодействие поверхности металла с (коррозионно-активной) средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

    4Fe + 3O 2 → 2Fe 2 O 3

    При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

    При химической коррозии окисление металла и восстановление окислительного компонента коррозионной среды происходят одновременно. Такая коррозия наблюдается при действии на металлы сухих газов (воздуха, продуктов горения топлива) и жидких не электролитов (нефти, бензина и т. д.) и представляет собой гетерогенную химическую реакцию.

    Процесс химической коррозии происходит следующим образом. Окислительный компонент внешней среды, отнимая у металла валентные электроны, одновременно вступает с ним в химическое соединение, образуя на поверхности металла пленку (продукт коррозии). Дальнейшее образование пленки происходит за счет взаимной двусторонней диффузии через пленку агрессивной среды к металлу и атомов металла по направлению к внешней среде и их взаимодействия. При этом если образующаяся пленка обладает защитными свойствами, т. е. препятствует диффузии атомов, то коррозия протекает с самоторможением во времени. Такая пленка образуется на меди при температуре нагрева 100 °С, на никеле - при 650, на железе - при 400 °С. Нагрев стальных изделий выше 600 °С приводит к образованию на их поверхности рыхлой пленки. С повышением температуры процесс окисления идет с ускорением.

    Наиболее распространенным видом химической коррозии является коррозия металлов в газах при высокой температуре - газовая коррозия. Примерами такой коррозии являются окисление арматуры печей, деталей двигателей внутреннего сгорания, колосников, деталей керосиновых ламп и окисление при высокотемпературной обработке металлов (ковке, прокате, штамповке). На поверхности металлоизделий возможно образование и других продуктов коррозии. Например, при действии сернистых соединений на железе образуются сернистые соединения, на серебре при действии паров йода - йодистое серебро и т. д. Однако чаще всего на поверхности металлов образуется слой оксидных соединений.

    Большое влияние на скорость химической коррозии оказывает температура. С повышением температуры скорость газовой коррозии увеличивается. Состав газовой среды оказывает специфическое влияние на скорость коррозии различных металлов. Так, никель устойчив в среде кислорода, углекислого газа, но сильно корродирует в атмосфере сернистого газа. Медь подвержена коррозии в атмосфере кислорода, но устойчива в атмосфере сернистого газа. Хром обладает коррозионной стойкостью во всех трех газовых средах.

    Для защиты от газовой коррозии используют жаростойкое легирование хромом, алюминием и кремнием, создание защитных атмосфер и защитных покрытий алюминием, хромом, кремнием и жаростойкими эмалями.

    2. Химическая коррозия в судовых паровых котлах.

    Виды коррозии. В процессе работы элементы парового котла подвергаются воздействию агрессивных сред - воды, пара и дымовых газов. Различают коррозию химическую и электрохимическую.

    Химической коррозии подвержены детали и узлы машин, работающих при высоких температурах, - двигатели поршневого и турбинного типа, ракетные двигатели и т. п. Химическое сродство большинства металлов к кислороду при высоких температурах почти неограниченно, так как оксиды всех технически важных металлов способны растворяться в металлах и уходить из равновесной системы:

    2Ме(т) + O 2 (г) 2МеО(т); МеО(т) [МеО] (р-р)

    В этих условиях окисление всегда возможно, но наряду с растворением оксида появляется и оксидный слой на поверхности металла, который может тормозить процесс окисления.

    Скорость окисления металла зависит от скорости собственно химической реакции и скорости диффузии окислителя через пленку, а поэтому защитное действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная способность. Сплошность пленки, образующейся на поверхности металла, можно оценить по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла (фактор Пиллинга-Бэдвордса). Коэффициент a (фактор Пиллинга - Бэдвордса) у разных металлов имеет разные значения. Металлы, у которых a <1, не могут создавать сплошные оксидные слои, и через несплошности в слое (трещины) кислород свободно проникает к поверхности металла.

    Сплошные и устойчивые оксидные слои образуются при a = 1,2-1,6, но при больших значениях a пленки получаются несплошные, легко отделяющиеся от поверхности металла (железная окалина) в результате возникающих внутренних напряжений.

    Фактор Пиллинга - Бэдвордса дает очень приближенную оценку, так как состав оксидных слоев имеет большую широту области гомогенности, что отражается и на плотности оксида. Так, например, для хрома a = 2,02 (по чистым фазам), но пленка оксида, образующегося на нем, весьма устойчива к действию окружающей среды. Толщина оксидной пленки на поверхности металла меняется в зависимости от времени.

    Химическая коррозия, вызванная паром или водой, разрушает металл равномерно по всей поверхности. Скорость такой коррозии в современных судовых котлах низкая. Более опасна местная химическая коррозия, вызываемая агрессивными химическими соединениями, содержащимися в отложениях золы (серы, окислов ванадия и т. п.).

    Электрохимическая коррозия, как показывает ее название, связана не только с химическими процессами, но и с передвижением электронов во взаимодействующих средах, т.е. с появлением электрического тока. Эти процессы происходят при взаимодействии металла с растворами электролитов, что и имеет место в паровом котле, в котором циркулирует котловая вода, представляющая собой раствор распавшихся на ионы солей и щелочей. Электрохимическая коррозия протекает также при контактировании металла с воздухом (при обычной температуре), содержащем всегда пары воды, которые конденсируясь на поверхности металла в виде тончайшей пленки влаги, создают условия для протекания электрохимической коррозии.

    Что такое Гидро-Икс:

    Гидро-Икс (Hydro-X) называют изобретен­ный в Дании 70 лет назад метод и раствор, обес­печивающие необходимую коррекционную обра­ботку воды для систем отопления и котлов как водогрейных, так и паровых с низким давлением пара (до 40 атм). При использовании метода Гид­ро-Икс в циркулирующую воду добавляется толь­ко один раствор, поставляемый к потребителю в пластиковых канистрах или бочках в уже готовом для использования виде. Это позволяет не иметь на предприятиях специальных складов для хими­ческих реагентов, цеха для приготовления необ­ходимых растворов и т. п.

    Использование Гидро-Икс обеспечивает поддержание необходимой величины рН, очистку воды от кислорода и свободной углекислоты, пре­дотвращение появления накипи, а при ее наличии отмывку поверхностей, а также предохранение от коррозии.

    Гидро-Икс представляет собой прозрачную желтовато-коричневую жидкость, однородную, сильно щелочную, с удельным весом около 1,19 г/см при 20 °С. Ее состав стабилен и даже при длительном хранении не имеет место разделение жидкости или выпадение осадка, так что нет нуж­ды в перемешивании перед употреблением. Жид­кость не огнеопасна.

    Достоинства метода Гидро-Икс – про­стота и эффективность водоподготовки.

    При работе водонагревательных систем, включающих теплообменники, водогрейные или паровые котлы, как правило, производится их подпитка добавочной водой. Для предотвращения появления накипи необходимо осуществлять водоподготовку с целью уменьшения содержания шлама и солей в котловой воде. Водоподготовка может быть осуществлена, например, за счет ис­пользования умягчающих фильтров, применения обессоливания, обратного осмоса и др. Даже по­сле такой обработки остаются проблемы, связан­ные с возможным протеканием коррозии. При до­бавке в воду каустической соды, тринатрийфосфата и т. п., также остается проблема коррозии, а для паровых котлов и загрязнение пара.

    Достаточно простым методом, предотвра­щающим появление накипи и коррозию, является метод Гидро-Икс, согласно которому добавляется в котловую воду небольшое количество уже при­готовленного раствора, содержащего 8 органиче­ских и неорганических компонентов. Достоинства метода заключаются в следующем:

    – раствор поступает к потребителю в уже готовом для использования виде;

    – раствор в небольших количествах вводит­ся в воду либо вручную, либо с помощью насоса-дозатора;

    – при использовании Гидро-Икс нет необхо­димости применять другие химические вещества;

    – в котловую воду подается примерно в 10 раз меньше активных веществ, чем при примене­нии традиционных методов обработки воды;

    Гидро-Икс не содержит токсичных компо­нентов. Кроме гидроксида натрия NaOH и тринатрийфосфата Na3PO4 все остальные вещества из­влечены из нетоксичных растений;

    – при использовании в паровых котлах и ис­парителях обеспечивается чистый пар и предот­вращается возможность вспенивания.

    Состав Гидро-Икс.

    Раствор включает восемь различных веществ как органических, так и неорганических. Механизм действия Гидро-Икс носит комплексный физико-химический характер.

    Направление воздействия каждой состав­ляющей примерно следующее.

    Гидроксид натрия NaOH в количестве 225 г/л уменьшает жесткость воды и регулирует зна­чение рН, предохраняет слой магнетита; тринатрийфосфат Na3PO4 в количестве 2,25 г/л – пре­дотвращает образование накипи и защищает по­верхность из железа. Все шесть органических соеди­нений в сумме не превышают 50 г/л и включают лигнин, танин, крахмал, гликоль, альгинат и маннуронат натрия. Общее количество базовых ве­ществ NaOH и Na3PO4 при обработке воды Гидро-Икс очень мало, примерно в десять раз меньше, чем используют при традиционной обработке, согласно принципу стехиометрии.

    Влияние компонентов Гидро-Икс скорее физическое, чем химическое.

    Органические добавки служат следующим целям.

    Альгинат и маннуронат натрия используют­ся вместе с некоторыми катализаторами и спо­собствуют осаждению солей кальция и магния. Танины поглощают кислород и создают защитный от коррозии слой железа. Лигнин действует по­добно танину, а также способствует удалению имеющейся накипи. Крахмал формирует шлам, а гликоль препятствует вспениванию и уносу капель влаги. Неорганические соединения поддерживают необходимую для эффективного действия орга­нических веществ слабо щелочную среду, служат индикатором концентрации Гидро-Икс.

    Принцип действия Гидро-Икс.

    Решающую роль в действии Гидро-Икс ока­зывают органические составляющие. Хотя они присутствуют в минимальных количествах, за счет глубокого диспергирования их активная реакцион­ная поверхность достаточно велика. Молекуляр­ный вес органических составляющих Гидро-Икс значителен, что обеспечивает физический эф­фект притягивания молекул загрязнителей воды. Этот этап водоподготовки протекает без химиче­ских реакций. Поглощение молекул загрязнителей нейтрально. Это позволяет собрать все такие мо­лекулы, как создающие жесткость, так и соли же­леза, хлориды, соли кремниевой кислоты и др. Все загрязнители воды осаждаются в шламе, ко­торый подвижен, аморфен и не слипается. Это предотвращает возможность образования накипи на поверхностях нагрева, что является сущест­венным достоинством метода Гидро-Икс.

    Нейтральные молекулы Гидро-Икс погло­щают как положительные, так и отрицательные ионы (анионы и катионы), которые в свою очередь взаимно нейтрализуются. Нейтрализация ионов непосредственно влияет на уменьшение электро­химической коррозии, поскольку этот вид коррозии связан с различным электрическим потенциалом.

    Гидро-Икс эффективен против коррозионно опасных газов – кислорода и свободной углекислоты. Концентрация Гидро-Икс в 10 ррт вполне достаточна, чтобы предотвратить этот вид корро­зии независимо от температуры среды.

    Каустическая сода может привести к появ­лению каустической хрупкости. Применение Гид­ро-Икс уменьшает количество свободных гидроксидов, значительно снижая риск каустической хрупкости стали.

    Без остановки системы для промывки процесс Гидро-Икс позволяет удалить старые су­ществующие накипи. Это происходит благодаря наличию молекул лигнина. Эти молекулы прони­кают в поры котловой накипи и разрушают ее. Хо­тя все же следует отметить, что, если котел силь­но загрязнен, экономически целесообразнее про­вести химическую промывку, а затем уже для предотвращения накипи использовать Гидро-Икс, что уменьшит его расход.

    Образовавшийся шлам собирается в шламонакопителях и удаляется из них путем перио­дических продувок. В качестве шламонакопителей могут использоваться фильтры (грязевики), через которые пропускается часть возвращаемой в ко­тел воды.

    Важно, чтобы образовавшийся под дейст­вием Гидро-Икс шлам по возможности удалялся ежедневными продувками котла. Величина про­дувки зависит от жесткости воды и типа предпри­ятия. В начальный период, когда происходит очи­стка поверхностей от уже имеющегося шлама и в воде находится значительное содержание загряз­няющих веществ, продувка должна быть больше. Продувка проводится полным открытием проду­вочного клапана на 15-20 секунд ежедневно, а при большой подпитке сырой воды 3-4 раза в день.

    Гидро-Икс может применяться в отопитель­ных системах, в системах централизованного теп­лоснабжения, для паровых котлов невысокого давления (до 3,9 МПа). Одновременно с Гидро-Икс никакие другие реагенты не должны быть ис­пользованы, кроме сульфита натрия и соды. Само собой разумеется, что реагенты для добавочной воды не относятся к этой категории.

    В первые несколько месяцев эксплуатации расход реагента следует несколько увеличить, с целью устранения существующей в системе наки­пи. Если есть опасение, что пароперегреватель котла загрязнен отложениями солей, его следует очистить другими методами.

    При наличии внешней системы водоподготовки необходимо выбрать оптимальный режим эксплуатации Гидро-Икс, что позволит обеспе­чить общую экономию.

    Передозировка Гидро-Икс не сказывается отрицательно ни на надежности работы котла, ни на качестве пара для паровых котлов и влечет лишь увеличение расхода самого реагента.

    Паровые котлы

    В качестве добавочной воды используется сырая вода.

    Постоянная дозировка: 0,2 л Гидро-Икс на каждый метр кубический добавочной воды и 0,04 л Гидро-Икс на каждый метр кубический конденсата.

    В качестве добавочной воды умягченная вода.

    Начальная дозировка: 1 л Гидро-Икс на каждый метр кубический воды в котле.

    Постоянная дозировка: 0,04 л Гидро-Икс на каждый метр кубический добавочной воды и конденсата.

    Дозировка для очистки котла от накипи: Гидро-Икс дозируется в количестве на 50 % больше посто­янной дозы.

    Системы теплоснабжения

    В качестве подпиточной воды – сырая вода.

    Начальная дозировка: 1 л Гидро-Икс на каждый метр кубический воды.

    Постоянная дозировка: 1 л Гидро-Икс на каждый метр кубический подпиточной воды.

    В качестве подпиточной воды – умягченная вода.

    Начальная дозировка: 0,5 л Гидро-Икс на каждый метр кубический воды.

    Постоянная дозировка: 0,5 л Гидро-Икс на каждый метр кубический подпиточной воды.

    На практике дополнительная дозировка основыва­ется на результатах анализов величины рН и жесткости.

    Измерение и контроль

    Нормальная дозировка Гидро-Икс состав­ляет в сутки примерно 200-400 мл на тонну доба­вочной воды при средней жесткости 350 мкгэкв/дм3 в расчете на СаСО3, плюс 40 мл на тонну обратной воды. Это, разумеется, ориентировочные цифры, а более точно дозирование может быть установ­лено контролем за качеством воды. Как уже отме­чалось, передозировка не нанесет никакого вреда, но правильная дозировка позволит экономить средства. Для нормальной эксплуатации прово­дится контроль жесткости (в расчете на СаСО3), суммарной концентрации ионогенных примесей, удельной электропроводности, каустической ще­лочности, показателя концентрации водородных ионов (рН) воды. Благодаря простоте и большому диапазону надежности Гидро-Икс может приме­няться как ручным дозированием, так и в автома­тическом режиме. При желании потребитель мо­жет заказать систему контроля и компьютерного управления процессом.