Ремонт Дизайн Мебель

Наружная коррозия экранных труб. Коррозия паровых котлов Газовая коррозия элементов котельного оборудования

Ряд котельных использует для подпитки тепловых сетей речные и водопроводные воды с низким значением рН и малой жесткостью. Дополнительная обработка речной воды на водопроводной станции обычно приводит к снижению pН, уменьшению щелочности и повышению содержания агрессивной углекислоты. Появление агрессивной углекислоты возможно также в схемах подключения, применяемых для крупных систем теплоснабжения с непосредственным водоразбором горячей воды (2000ч3000 т/ч). Умягчение воды по схеме Na-катионирования повышает ее агрессивность вследствие удаления природных ингибиторов коррозии - солей жесткости.

При плохо налаженной деаэрации воды и возможных повышениях концентраций кислорода и углекислоты из-за отсутствия дополнительных защитных мероприятий в системах теплоснабжения внутренней коррозии подвержено теплосиловое оборудование ТЭЦ.

При обследовании подпиточного тракта одной из ТЭЦ г. Ленинграда были получены следующие данные по скорости коррозии, г/(м2 · 4):

Место установки индикаторов коррозии

В трубопроводе подпиточной воды после подогревателей теплосети перед деаэраторами трубы толщиной 7 мм утонились за год эксплуатации местами до 1 мм на отдельных участках образовались сквозные свищи.

Причины язвенной коррозии труб водогрейных котлов следующие:

недостаточное удаление кислорода из подпиточной воды;

низкое значение рН обусловленное присутствием агрессивной углекислоты

(до 10ч15 мг/л);

накопление продуктов кислородной коррозии железа (Fe2O3;) на теплопередающих поверхностях.

Эксплуатация оборудования на сетевой воде с концентрацией железа свыше 600 мкг/л обычно приводит к тому, что на несколько тысяч часов работы водогрейных котлов наблюдается интенсивный (свыше 1000 г/м2) занос железоокисидными отложениями их поверхностей нагрева. При этом отмечаются часто появляющиеся течи в трубах конвективной части. В составе отложений содержание окислов железа обычно достигает 80ч90%.

Особенно важными для эксплуатации водогрейных котлов являются пусковые периоды. В первоначальный период эксплуатации на одной ТЭЦ не обеспечивалось удаление кислорода до норм, установленных ПТЭ. Содержание кислорода в подпиточной воде превышало эти нормы в 10 раз.

Концентрация железа в подпиточной воде достигала - 1000 мкг/л, а в обратной воде теплосети - 3500 мкг/л. После первого года эксплуатации были сделаны вырезки из трубопроводов сетевой воды, оказалось, что загрязнение их поверхности продуктами коррозии составляло свыше 2000 г/м2.

Необходимо отметить, что на этой ТЭЦ перед включением котла в работу внутренние поверхности экранных труб и труб конвективного пучка подверглись химической очистке. К моменту вырезки образцов экранных труб котел проработал 5300 ч. Образец экранной трубы имел неровный слой желзоокисидных отложений черно-бурого цвета, прочно связаный с металлом; высота бугорков 10ч12 мм; удельная загрязненность 2303 г/м2.

Состав отложений, %

Поверхность металла под слоем отложений была поражена язвами глубиной до 1 мм. Трубки конвективного пучка с внутренней стороны были занесены отложениями железооксидного типа черно-бурого цвета с высотой бугорков до 3ч4 мм. Поверхность металла под отложениями покрыта язвами различных размеров глубиной 0,3ч1,2 и диаметром 0,35ч0,5 мм. Отдельные трубки имели сквозные отверстия (свищи).

Когда водогрейные котлы устанавливают в старых системах централизованного теплоснабжении, в которых накопилось значительное количество окислов железа, наблюдаются случаи отложения этих окислов в обогреваемых трубах котла. Перед включением котлов необходимо производить тщательную промывку всей системы.

Ряд исследователей признает важную роль в возникновении подшламовой коррозии процесса ржавления труб водогрейных котлов при их простоях, когда не принято должных мер для предупреждения стояночной коррозии. Очаги коррозии, возникающие под воздействием атмосферного воздуха на влажные поверхности котлов, продолжают функционировать при работе котлов.

Идентификация видов коррозии затруднена, и, следовательно, нередки ошибки при определении технологически и экономически оптимальных мер противодействия коррозии. Основные необходимые меры предпринимаются в соответствии с нормативными документами, где установлены пределы главных инициаторов коррозии.

ГОСТ 20995-75 «Котлы паровые стационарные давлением до 3,9 МПа. Показатели качества питательной воды и пара» нормирует показатели в питательной воде: прозрачность, то есть количество взвешенных примесей; общая жесткость, содержание соединений железа и меди - предотвращение накипеобразования и железо- и медноокисных отложений; значение рН - предотвращение щелочной и кислотной коррозии и также пенообразования в барабане котла; содержание кислорода - предотвращение кислородной коррозии; содержание нитритов - предотвращение нитритной коррозии; содержание нефтепродуктов - предотвращение пенообразования в барабане котла.

Значения норм определены ГОСТом в зависимости от давления в котле (следовательно, от температуры воды), от мощности локального теплового потока и от технологии водоподготовки.

При исследовании причин коррозии, прежде всего, необходимо проводить осмотр (где это доступно) мест разрушения металла, анализ условий работы котла в предаварийный период, анализ качества питательной воды, пара и отложений, анализ конструктивных особенностей котла.

При внешнем осмотре можно подозревать следующие виды коррозии.

Кислородная коррозия

: входные участки труб стальных экономайзеров; питательные трубопроводы при встрече с недостаточно обескислороженной (выше нормы) водой - «прорывы» кислорода при плохой деаэрации; подогреватели питательной воды; все влажные участки котла во время его остановки и непринятия мер по предотвращению поступления воздуха в котел, особенно в застойных участках, при дренировании воды, откуда трудно удалить конденсат пара или полностью залить водой, например вертикальные трубы пароперегревателей. Во время простоев коррозия усиливается (локализируется) в присутствии щелочи (менее 100 мг/л).

Кислородная коррозия редко (при содержании кислорода в воде, значительном превышающем норму, - 0,3 мг/л) проявляется в паросепарационных устройствах барабанов котлов и на стенке барабанов на границе уровня воды; в опускных трубах. В подъемных трубах коррозия не проявляется из-за деаэрирующего действия паровых пузырьков.

Вид и характер повреждения . Язвы различной глубины и диаметра, часто покрытые бугорками, верхняя корка которых - красноватые окислы железа (вероятно, гематит Fе 2 О 3). Свидетельство активной коррозии: под коркой бугорков - черный жидкий осадок, наверное, магнетит (Fе 3 О 4) в смеси с сульфатами и хлоридами. При затухшей коррозии под коркой - пустота, а дно язвы покрыто отложениями накипи и шлама.

При рН воды > 8,5 - язвы редкие, но более крупные и глубокие, при рН < 8,5 - встречаются чаще, но меньших размеров. Только вскрытие бугорков помогает интерпретировать бугорки не как поверхностные отложения, а как следствие коррозии.

При скорости воды более 2 м/с бугорки могут принять продолговатую форму в направлении движения струи.

. Магнетитные корки достаточно плотные и могли бы служить надежным препятствием для проникновения кислорода внутрь бугорков. Но они часто разрушаются в результате коррозионной усталости, когда циклично изменяется температура воды и металла: частые остановы и пуски котла, пульсирующее движение пароводяной смеси, расслоение пароводяной смеси на отдельные пробки пара и воды, следующие друг за другом.

Коррозия усиливается с ростом температуры (до 350 °С) и увеличением содержания хлоридов в котловой воде. Иногда коррозию усиливают продукты термического распада некоторых органических веществ питательной воды.

Рис. 1. Внешний вид кислородной коррозии

Щелочная (в более узком смысле - межкристаллитная) коррозия

Места коррозионного повреждения металла . Трубы в зонах теплового потока большой мощности (район горелок и напротив вытянутого факела) - 300-400 кВт/м 2 и где температура металла на 5-10 °С выше температуры кипения воды при данном давлении; наклонные и горизонтальные трубы, где слабая циркуляция воды; места под толстыми отложениями; зоны вблизи подкладных колец и в самих сварных швах, например, в местах приварки внутрибарабанных паросепарационных устройств; места около заклепок.

Вид и характер повреждения . Полусферические или эллиптические углубления, заполненные продуктами коррозии, часто включающие блестящие кристаллы магнетита (Fе 3 О 4). Большая часть углублений покрыта твердой коркой. На стороне труб, обращенных к топке, углубления могут соединяться, образуя так называемую коррозионную дорожку шириной 20-40 мм и длиной до 2-3 м.

Если корка недостаточно устойчива и плотна, то коррозия может привести - в условиях механического напряжения - к появлению трещин в металле, особенно около щелей: заклепки, вальцовочные соединения, места приварки паросепарационных устройств.

Причины коррозионного повреждения . При высоких температурах - более 200 °С - и большой концентрации едкого натра (NаОН) - 10 % и более - защитная пленка (корка) на металле разрушается:

4NаОН + Fе 3 О 4 = 2NаFеО 2 + Nа 2 FеО 2 + 2Н 2 О (1)

Промежуточный продукт NаFеО 2 подвергается гидролизу:

4NаFеО 2 + 2Н 2 О = 4NаОН + 2Fe 2 О 3 + 2Н 2 (2)

То есть в этой реакции (2) едкий натр восстанавливается, в реакциях (1), (2) не расходуется, а выступает в качестве катализатора.

Когда магнетит удален, то едкий натр и вода могут реагировать с железом непосредственно с выделением атомарного водорода:

2NаОН + Fе = Nа 2 FеО 2 + 2Н (3)

4Н 2 О + 3Fе = Fе 3 О 4 + 8Н (4)

Выделяющийся водород способен диффундировать внутрь металла и образовывать с карбидом железа метан (CH 4):

4Н + Fе 3 С = СН 4 + 3Fе (5)

Возможно также объединение атомарного водорода в молекулярный (Н + Н = Н 2).

Метан и молекулярный водород не могут проникать внутрь металла, они скапливаются на границах зерен и при наличии трещин расширяют и углубляют их. Кроме того, эти газы препятствуют образованию и уплотнению защитных пленок.

Концентрированный раствор едкого натра образуется в местах глубокого упаривания котловой воды: плотные накипные отложения солей (вид подшламовой коррозии); кризис пузырькового кипения, когда образуется устойчивая паровая пленка над металлом - там металл почти не повреждается, но по краям пленки, где идет активное испарение, едкий натр концентрируется; наличие щелей, где идет испарение, отличное от испарения во всем объеме воды: едкий натр испаряется хуже, чем вода, не размывается водой и накапливается. Действуя на металл, едкий натр образует на границах зерен щели, направленные внутрь металла (вид межкристаллитной коррозии - щелевая).

Межкристаллитная коррозия под влиянием щелочной котловой воды чаще всего концентрируется в барабане котла.


Рис. 3. Межкристаллитная коррозия: а - микроструктура металла до коррозии, б - микроструктура на стадии коррозии, образование трещин по границе зерен металла

Такое коррозионное воздействие на металл возможно только при одновременном наличии трех факторов:

  • местные растягивающие механические напряжения, близкие или несколько превышающие предел текучести, то есть 2,5 МН/мм 2 ;
  • неплотные сочленения деталей барабана (указаны выше), где может происходить глубокое упаривание котловой воды и где накапливающийся едкий натр растворяет защитную пленку оксидов железа (концентрация NаОН более 10 %, температура воды выше 200 °С и - особенно - ближе к 300 °С). Если котел эксплуатируется с давлением меньшим, чем паспортное (например, 0,6-0,7 МПа вместо 1,4 МПа), то вероятность этого вида коррозии уменьшается;
  • неблагоприятное сочетание веществ в котловой воде, в которой отсутствуют необходимые защитные концентрации ингибиторов этого вида коррозии. В качестве ингибиторов могут выступать натриевые соли: сульфаты, карбонаты, фосфаты, нитраты, сульфитцеллюлозный щелок.


Рис. 4. Внешний вид межкристаллитной коррозии

Коррозионные трещины не развиваются, если соблюдается отношение:

(Nа 2 SО 4 + Nа 2 СО 3 + Nа 3 РО 4 + NаNО 3)/(NaOH) ≥ 5, 3 (6)

где Nа 2 SО 4 , Nа 2 СО 3 , Nа 3 РО 4 , NаNO 3 , NaOH - содержание соответственно натрий сульфата, натрий карбоната, натрий фосфата, натрий нитрата и натрий гидроксида, мг/кг.

В изготавливаемых в настоящее время котлах по крайней мере одно из указанных условий возникновения коррозии отсутствует.

Наличие в котловой воде кремниевых соединений также может усиливать межкристаллитную коррозию.

NаСl в данных условиях - не ингибитор коррозии. Выше было показано: ионы хлора (Сl -) - ускорители коррозии, из-за большой подвижности и малых размеров они легко проникают через защитные окисные пленки и дают с железом хорошо растворимые соли (FеСl 2 , FеСl 3) вместо малорастворимых оксидов железа.

В воде котельных традиционно контролируют значения общей минерализации, а не содержание отдельных солей. Вероятно, по этой причине было введено нормирование не по указанному соотношению (6), а по значению относительной щелочности котловой воды:

Щ кв отн = Щ ов отн = Щ ов 40 100/S ов ≤ 20, (7)

где Щ кв отн - относительная щелочность котловой воды, %; Щ ов отн - относительная щелочность обработанной (добавочной) воды, %; Щ ов - общая щелочность обработанной (добавочной) воды, ммоль/л; S ов - минерализация обработанной (добавочной) воды (в том числе - содержание хлоридов), мг/л.

Общая щелочность обработанной (добавочной) воды может быть принята равной, ммоль/л:

  • после натрий-катионирования - общей щелочности исходной воды;
  • после водород-натрий-катионирования параллельного - (0,3-0,4), или последовательного с «голодной» регенерацией водород-катионитного фильтра - (0,5-0,7);
  • после натрий-катионирования с подкислением и натрий-хлор-ионирования - (0,5-1,0);
  • после аммоний-натрий-катионирования - (0,5-0,7);
  • после известкования при 30-40 °С - (0,35-1,0);
  • после коагулирования - (Щ о исх - Д к), где Щ о исх - общая щелочность исходной воды, ммоль/л; Д к - доза коагулянта, ммоль/л;
  • после содоизвесткования при 30-40 °С - (1,0-1,5), а при 60-70 °С - (1,0-1,2).

Значения относительной щелочности котловой воды по нормам Ростехнадзора принимаются, %, не более:

  • для котлов с клепаными барабанами - 20;
  • для котлов со сварными барабанами и ввальцованными в них трубами - 50;
  • для котлов со сварными барабанами и приваренными к ним трубами - любое значение, не нормируется.


Рис. 4. Результат межкристаллитной коррозии

По нормам Ростехнадзора Щ кв отн - один из критериев безопасной работы котлов. Правильнее проверять критерий потенциальной щелочной агрессивности котловой воды, который не учитывает содержание иона хлора:

К щ = (S ов - [Сl - ])/40 Щ ов, (8)

где К щ - критерий потенциальной щелочной агрессивности котловой воды; S ов - минерализация обработанной (добавочной) воды (в том числе - содержание хлоридов), мг/л; Сl - - содержание хлоридов в обработанной (добавочной) воде, мг/л; Щ ов - общая щелочность обработанной (добавочной) воды, ммоль/л.

Значение К щ можно принимать:

  • для котлов с клепаными барабанами давлением более 0,8 МПа ≥ 5;
  • для котлов со сварными барабанами и ввальцованными в них трубами давлением более 1,4 МПа ≥ 2;
  • для котлов со сварными барабанами и приваренными к ним трубами, а также для котлов со сварными барабанами и ввальцованными в них трубами давлением до 1,4 МПа и котлов с клепаными барабанами давлением до 0,8 МПа - не нормировать.

Подшламовая коррозия

Под этим названием объединяют несколько разных видов коррозии (щелочная, кислородная и др.). Накопление в разных зонах котла рыхлых и пористых отложений, шлама вызывает коррозию металла под шламом. Главная причина: загрязнение питательной воды окислами железа.

Нитритная коррозия

. Экранные и кипятильные трубы котла на стороне, обращенной в топку.

Вид и характер повреждений . Редкие, резко ограниченные крупные язвы.

. При наличии в питательной воде нитритных ионов (NО - 2) более 20 мкг/л, температуре воды более 200 °С, нитриты служат катодными деполяризатрами электрохимической коррозии, восстанавливаясь до НNО 2 , NО, N 2 (см. выше).

Пароводяная коррозия

Места коррозионных повреждений металла . Выходная часть змеевиков пароперегревателей, паропроводы перегретого пара, горизонтальные и слабонаклонные парогенерирующие трубы на участках плохой циркуляции воды, иногда по верхней образующей выходных змеевиков кипящих водяных экономайзеров.

Вид и характер повреждений . Налеты плотных черных оксидов железа (Fе 3 О 4), прочно сцепленных с металлом. При колебаниях температуры сплошность налета (корки) нарушается, чешуйки отваливаются. Равномерное утончение металла с отдулинами, продольными трещинами, разрывами.

Может идентифицироваться в качестве подшламовой коррозии: в виде глубоких язв с нечетко отграниченными краями, чаще возле выступающих внутрь трубы сварных швов, где скапливается шлам.

Причины коррозионных повреждений :

  • омывающая среда - пар в пароперегревателях, паропроводах, паровые «подушки» под слоем шлама;
  • температура металла (сталь 20) более 450 °С, тепловой поток на участок металла - 450 кВт/м 2 ;
  • нарушение топочного режима: зашлаковывание горелок, повышенное загрязнение труб внутри и снаружи, неустойчивое (вибрационное) горение, удлинение факела по направлению к трубам экранов.

В результате: непосредственное химическое взаимодействие железа с водяным паром (см. выше).

Микробиологическая коррозия

Вызывается аэробными и анаэробными бактериями, появляется при температурах 20-80 °С.

Места повреждений металла . Трубы и емкости до котла с водой указанной температуры.

Вид и характер повреждений . Бугорки разных размеров: диаметр от нескольких миллиметров до нескольких сантиметров, редко - несколько десятков сантиметров. Бугорки покрыты плотными оксидами железа - продукт жизнедеятельности аэробных бактерий. Внутри - порошок и суспензия черного цвета (сульфид железа FеS) - продукт сульфатвосстанавливающих анаэробных бактерий, под черным образованием - круглые язвы.

Причины повреждений . В природной воде всегда присутствуют сульфаты железа, кислород и разные бактерии.

Железобактерии в присутствии кислорода образуют пленку оксидов железа, под ней анаэробные бактерии восстанавливают сульфаты до сульфида железа (FеS) и сероводорода (Н 2 S). В свою очередь, сероводород дает старт образованию сернистой (очень нестойкой) и серной кислот, и металл корродирует.

На коррозию котла этот вид оказывает косвенное влияние: поток воды при скорости 2-3 м/с срывает бугорки, уносит их содержимое в котел, увеличивая накопление шлама.

В редких случаях возможно протекание этой коррозии в самом котле, если во время длительной остановки котла в резерв он заполняется водой с температурой 50-60 о С, и температура поддерживается за счет случайных прорывов пара из соседних котлов.

«Хелатная» коррозия

Места коррозионного повреждения . Оборудование, в котором пар отделяется от воды: барабан котла, паросепарационные устройства в барабане и вне его, также - редко - в трубопроводах питательной воды и экономайзере.

Вид и характер повреждения . Поверхность металла - гладкая, но если среда движется с большой скоростью, то корродированная поверхность - негладкая, имеет подковообразные углубления и «хвосты», ориентированные в направлении движения. Поверхность покрыта тонкой матовой или черной блестящей пленкой. Явных отложений нет, нет и продуктов коррозии, потому что «хелат» (специально вводимые в котел органические соединения полиаминов) уже прореагировал.

В присутствии кислорода, что в нормально работающем котле случается редко, коррозированная поверхность - «взбодренная»: шероховатости, островки металла.

Причины коррозионного повреждения . Механизм действия «хелата» описан ранее («Промышленные и отопительные котельные и мини-ТЭЦ», 1(6)΄ 2011, с.40).

«Хелатная» коррозия возникает при передозировке «хелата», но и при нормальной дозе возможна, так как «хелат» концентрируется в зонах, где идет интенсивное испарение воды: пузырьковое кипение заменяется пленчатым. В паросепарационных устройствах бывают случаи особенно разрушительного действия «хелатной» коррозии из-за больших турбулентных скоростей воды и пароводяной смеси.

Все описанные коррозионные повреждения могут иметь синэнергетический эффект, так что суммарный ущерб от совместного действия разных факторов коррозии может превысить сумму ущерба от отдельных видов коррозии.

Как правило, действие коррозионных агентов усиливает нестабильный тепловой режим котла, что вызывает коррозионную усталость и возбуждает термоусталостную коррозию: число пусков из холодного состояния - более 100, общее число пусков - более 200. Так как эти виды разрушений металла проявляются редко, то трещины, разрыв труб имеют вид, идентичный поражениям металла от разных видов коррозии.

Обычно для идентификации причины разрушения металла требуются дополнительно металлографические исследования: рентгенография, ультразвук, цветная и магнито-порошковая дефектоскопия.

Разными исследователями были предложены программы диагностирования видов коррозионных повреждений котельных сталей. Известны программа ВТИ (А.Ф. Богачев с сотрудниками) - в основном для энергетических котлов высокого давления, и разработки объединения «Энергочермет» - в основном для энергетических котлов низкого и среднего давления и котлов-утилизаторов.

Введение

Корро́зия (от лат. corrosio - разъедание) - это самопроизвольное разрушение металлов в результате химического или физико-химического взаимодействия с окружающей средой. В общем случае это - разрушение любого материала - будь то металл или керамика, дерево или полимер. Причиной коррозии служит термодинамическая неустойчивость конструкционных материалов к воздействию веществ, находящихся в контактирующей с ними среде. Пример - кислородная коррозия железа в воде:

4Fe + 2Н 2 О + ЗО 2 = 2(Fe 2 O 3 Н 2 О)

В повседневной жизни для сплавов железа (сталей) чаще используют термин «ржавление». Менее известны случаи коррозии полимеров. Применительно к ним существует понятие «старение», аналогичное термину «коррозия» для металлов. Например, старение резины из-за взаимодействия с кислородом воздуха или разрушение некоторых пластиков под воздействием атмосферных осадков, а также биологическая коррозия. Скорость коррозии, как и всякой химической реакции очень сильно зависит от температуры. Повышение температуры на 100 градусов может увеличить скорость коррозии на несколько порядков.

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых она протекает. Поэтому нет единой и всеобъемлющей классификации встречающихся случаев коррозии. Главная классификация производится по механизму протекания процесса. Различаются два вида: химическую коррозию и электрохимическую коррозию. В данном реферате подробно рассматривается химическая коррозия на примере судовых котельных установках малых и больших мощностей.

Коррозионные процессы отличаются широким распространением и разнообразием условий и сред, в которых она протекает. Поэтому нет единой и всеобъемлющей классификации встречающихся случаев коррозии.

По типу агрессивных сред, в которых протекает процесс разрушения, коррозия может быть следующих видов:

1) -Газовая коррозия

2) -Коррозия в неэлектролитах

3) -Атмосферная коррозия

4) -Коррозия в электролитах

5) -Подземная коррозия

6) -Биокоррозия

7) -Коррозия блуждающим током.

По условиям протеканию коррозионного процесса различаются следущие виды:

1) -Контактная коррозия

2) -Щелевая коррозия

3) -Коррозия при неполном погружении

4) -Коррозия при полном погружении

5) -Коррозия при переменном погружении

6) -Коррозия при трении

7) -Коррозия под напряжением.

По характеру разрушения:

Сплошная коррозия, охватывающая всю поверхность:

1) -равномерная;

2) -неравномерная;

3) -избирательная.

Локальная(местная) коррозия, охватывающая отдельные участки:

1) -пятнами;

2) -язвенная;

3) -точечная(или питтинг);

4) -сквозная;

5) -межкристаллитная.

1. Химическая коррозия

Представим себе металл в процессе производства металлического проката на металлургическом заводе: по клетям прокатного стана движется раскаленная масса. Во все стороны от нее разлетаются огненные брызги. Это с поверхности металла скалываются частички окалины – продукта химической коррозии, возникающего в результате взаимодействия металла с кислородом воздуха. Такой процесс самопроизвольного разрушения металла из-за непосредственного взаимодействия частиц окислителя и окисляемого металла, называется химической коррозией.

Химическая коррозия - взаимодействие поверхности металла с (коррозионно-активной) средой, не сопровождающееся возникновением электрохимических процессов на границе фаз. В этом случае взаимодействия окисление металла и восстановление окислительного компонента коррозионной среды протекают в одном акте. Например, образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом:

4Fe + 3O 2 → 2Fe 2 O 3

При электрохимической коррозии ионизация атомов металла и восстановление окислительного компонента коррозионной среды протекают не в одном акте и их скорости зависят от электродного потенциала металла (например, ржавление стали в морской воде).

При химической коррозии окисление металла и восстановление окислительного компонента коррозионной среды происходят одновременно. Такая коррозия наблюдается при действии на металлы сухих газов (воздуха, продуктов горения топлива) и жидких не электролитов (нефти, бензина и т. д.) и представляет собой гетерогенную химическую реакцию.

Процесс химической коррозии происходит следующим образом. Окислительный компонент внешней среды, отнимая у металла валентные электроны, одновременно вступает с ним в химическое соединение, образуя на поверхности металла пленку (продукт коррозии). Дальнейшее образование пленки происходит за счет взаимной двусторонней диффузии через пленку агрессивной среды к металлу и атомов металла по направлению к внешней среде и их взаимодействия. При этом если образующаяся пленка обладает защитными свойствами, т. е. препятствует диффузии атомов, то коррозия протекает с самоторможением во времени. Такая пленка образуется на меди при температуре нагрева 100 °С, на никеле - при 650, на железе - при 400 °С. Нагрев стальных изделий выше 600 °С приводит к образованию на их поверхности рыхлой пленки. С повышением температуры процесс окисления идет с ускорением.

Наиболее распространенным видом химической коррозии является коррозия металлов в газах при высокой температуре - газовая коррозия. Примерами такой коррозии являются окисление арматуры печей, деталей двигателей внутреннего сгорания, колосников, деталей керосиновых ламп и окисление при высокотемпературной обработке металлов (ковке, прокате, штамповке). На поверхности металлоизделий возможно образование и других продуктов коррозии. Например, при действии сернистых соединений на железе образуются сернистые соединения, на серебре при действии паров йода - йодистое серебро и т. д. Однако чаще всего на поверхности металлов образуется слой оксидных соединений.

Большое влияние на скорость химической коррозии оказывает температура. С повышением температуры скорость газовой коррозии увеличивается. Состав газовой среды оказывает специфическое влияние на скорость коррозии различных металлов. Так, никель устойчив в среде кислорода, углекислого газа, но сильно корродирует в атмосфере сернистого газа. Медь подвержена коррозии в атмосфере кислорода, но устойчива в атмосфере сернистого газа. Хром обладает коррозионной стойкостью во всех трех газовых средах.

Для защиты от газовой коррозии используют жаростойкое легирование хромом, алюминием и кремнием, создание защитных атмосфер и защитных покрытий алюминием, хромом, кремнием и жаростойкими эмалями.

2. Химическая коррозия в судовых паровых котлах.

Виды коррозии. В процессе работы элементы парового котла подвергаются воздействию агрессивных сред - воды, пара и дымовых газов. Различают коррозию химическую и электрохимическую.

Химической коррозии подвержены детали и узлы машин, работающих при высоких температурах, - двигатели поршневого и турбинного типа, ракетные двигатели и т. п. Химическое сродство большинства металлов к кислороду при высоких температурах почти неограниченно, так как оксиды всех технически важных металлов способны растворяться в металлах и уходить из равновесной системы:

2Ме(т) + O 2 (г) 2МеО(т); МеО(т) [МеО] (р-р)

В этих условиях окисление всегда возможно, но наряду с растворением оксида появляется и оксидный слой на поверхности металла, который может тормозить процесс окисления.

Скорость окисления металла зависит от скорости собственно химической реакции и скорости диффузии окислителя через пленку, а поэтому защитное действие пленки тем выше, чем лучше ее сплошность и ниже диффузионная способность. Сплошность пленки, образующейся на поверхности металла, можно оценить по отношению объема образовавшегося оксида или другого какого-либо соединения к объему израсходованного на образование этого оксида металла (фактор Пиллинга-Бэдвордса). Коэффициент a (фактор Пиллинга - Бэдвордса) у разных металлов имеет разные значения. Металлы, у которых a <1, не могут создавать сплошные оксидные слои, и через несплошности в слое (трещины) кислород свободно проникает к поверхности металла.

Сплошные и устойчивые оксидные слои образуются при a = 1,2-1,6, но при больших значениях a пленки получаются несплошные, легко отделяющиеся от поверхности металла (железная окалина) в результате возникающих внутренних напряжений.

Фактор Пиллинга - Бэдвордса дает очень приближенную оценку, так как состав оксидных слоев имеет большую широту области гомогенности, что отражается и на плотности оксида. Так, например, для хрома a = 2,02 (по чистым фазам), но пленка оксида, образующегося на нем, весьма устойчива к действию окружающей среды. Толщина оксидной пленки на поверхности металла меняется в зависимости от времени.

Химическая коррозия, вызванная паром или водой, разрушает металл равномерно по всей поверхности. Скорость такой коррозии в современных судовых котлах низкая. Более опасна местная химическая коррозия, вызываемая агрессивными химическими соединениями, содержащимися в отложениях золы (серы, окислов ванадия и т. п.).

Электрохимическая коррозия, как показывает ее название, связана не только с химическими процессами, но и с передвижением электронов во взаимодействующих средах, т.е. с появлением электрического тока. Эти процессы происходят при взаимодействии металла с растворами электролитов, что и имеет место в паровом котле, в котором циркулирует котловая вода, представляющая собой раствор распавшихся на ионы солей и щелочей. Электрохимическая коррозия протекает также при контактировании металла с воздухом (при обычной температуре), содержащем всегда пары воды, которые конденсируясь на поверхности металла в виде тончайшей пленки влаги, создают условия для протекания электрохимической коррозии.



Владельцы патента RU 2503747:

ОБЛАСТЬ ТЕХНИКИ

Изобретение относится к теплоэнергетике и может быть использовано для защиты от накипи нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе текущей эксплуатации.

УРОВЕНЬ ТЕХНИКИ

Эксплуатация паровых котлов связана с одновременным воздействием высоких температур, давления, механических напряжений и агрессивной среды, которой является котловая вода. Котловая вода и металл поверхностей нагрева котла представляют собой отдельные фазы сложной системы, которая образуется при их контакте. Итогом взаимодействия этих фаз являются поверхностные процессы, возникающие на границе их раздела. В результате этого в металле поверхностей нагрева возникают явления коррозии и образования накипи, что приводит к изменению структуры и механических свойств металла, и что способствует развитию различных повреждений. Поскольку теплопроводность накипи в пятьдесят раз ниже, чем у железа нагревательных труб, то имеют место потери тепловой энергии при теплопередаче - при толщине накипи 1 мм от 7 до 12%, а при 3 мм - 25%. Сильное образование накипи в системе парового котла непрерывного действия часто приводит к остановке производства на несколько дней в году для удаления накипи.

Качество питательной и, следовательно, котловой воды определяется присутствием примесей, которые могут вызывать различные виды коррозии металла внутренних поверхностей нагрева, образования первичной накипи на них, а также шлама, как источника образования вторичной накипи. Кроме того, качество котловой воды зависит и от свойств веществ, образующихся в результате поверхностных явлений при транспортировке воды, и конденсата по трубопроводам, в процессах водообработки. Удаление примесей из питательной воды является одним из способов предотвращения образования накипи и коррозии и осуществляется методами предварительной (докотловой) обработки воды, которые направлены на максимальное удаление примесей, находящихся в исходной воде. Однако применяемые методы не позволяют полностью исключить содержание примесей в воде, что связано не только с трудностями технического характера, но и экономической целесообразностью применения методов докотловой обработки воды. Кроме того, поскольку водоподготовка представляет сложную техническую систему, она является избыточной для котлов малой и средней производительности.

Известные методы удаления уже образовавшихся отложений используют в основном механические и химические способы очистки. Недостатком этих способов является то, что они не могут производиться в ходе эксплуатации котлов. Кроме того, способы химической очистки часто требуют использования дорогостоящих химических веществ.

Известны также способы предотвращения образования накипи и коррозии, осуществляемые в процессе работы котлов.

В патенте US 1877389 предложен способ удаления накипи и предотвращения ее образования в водогрейных и паровых котлах. В этом способе поверхность котла представляет собой катод, а анод размещен внутри трубопровода. Способ заключается в пропускании постоянного или переменного тока через систему. Авторы отмечают, что механизм действия способа заключается в том, что под действием электрического тока на поверхности котла образуются пузырьки газа, которые приводят к отслоению существующей накипи и препятствуют образованию новой. Недостатком указанного способа является необходимость постоянно поддерживать протекание электрического тока в системе.

В патенте US 5667677 предложен способ обработки жидкости, в частности воды, в трубопроводе с целью замедления образования накипи. Указанный способ основан на создании в трубах электромагнитного поля, которое отталкивает растворенные в воде ионы кальция, магния от стенок труб и оборудования, не давая им кристаллизоваться в виде накипи, что позволяет эксплуатировать котлы, бойлеры, теплообменники, системы охлаждения на жесткой воде. Недостатком указанного способа является дороговизна и сложность используемого оборудования.

В заявке WO 2004016833 предложен способ уменьшения образования накипи на металлической поверхности, подвергающейся воздействию пересыщенного щелочного водного раствора, из которого способна образовываться накипь после периода воздействия, включающий приложение катодного потенциала к указанной поверхности.

Указанный способ может использоваться в различных технологических процессах, в которых металл находится в контакте с водным раствором, в частности, в теплообменниках. Недостатком указанного способа является то, что он не обеспечивает защиту металлической поверхности от коррозии после снятия катодного потенциала.

Таким образом, в настоящее время существует потребность в разработке улучшенного способа предотвращения образования накипи нагревательных труб, водогрейных и паровых котлов, который был бы экономичным и высокоэффективным и обеспечивал антикоррозионную защиту поверхности в течение длительного промежутка времени после воздействия.

В настоящем изобретении указанная задача решена с помощью способа, согласно которому на металлической поверхности создается токоотводящий электрический потенциал, достаточный для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов к металлической поверхности.

КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Задачей настоящего изобретения является обеспечение улучшенного способа предотвращения образования накипи нагревательных труб водогрейных и паровых котлов.

Другой задачей настоящего изобретения является обеспечение возможности исключения или значительного уменьшения необходимости удаления накипи в процессе эксплуатации водогрейных и паровых котлов.

Еще одной задачей настоящего изобретения является исключение необходимости использования расходных реагентов для предотвращения образования накипи и коррозии нагревательных труб водогрейных и паровых котлов.

Еще одной задачей настоящего изобретения является обеспечение возможности начала работы по предотвращению образования накипи и коррозии нагревательных труб водогрейных и паровых котлов на загрязненных трубах котла.

Настоящее изобретение относится к способу предотвращения образования накипи и коррозии на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь. Указанный способ заключается в приложении к указанной металлической поверхности токоотводящего электрического потенциала, достаточного для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов к металлической поверхности.

Согласно некоторым частным вариантам реализации заявленного способа токоотводящий потенциал устанавливают в пределах 61-150 В. Согласно некоторым частным вариантам реализации заявленного способа вышеуказанный железосодержащий сплав представляет собой сталь. В некоторых вариантах реализации металлическая поверхность представляет собой внутреннюю поверхность нагревательных труб водогрейного или парового котла.

Раскрытый в данном описании способ имеет следующие преимущества. Одним преимуществом способа является уменьшенное образование накипи. Другим преимуществом настоящего изобретения является возможность использования однажды закупленного работающего электрофизического аппарата без необходимости использования расходных синтетических реагентов. Еще одним преимуществом является возможность начала работы на загрязненных трубках котла.

Техническим результатом настоящего изобретения, таким образом, является повышение эффективности работы водогрейных и паровых котлов, повышение производительности, увеличение эффективности теплопередачи, снижение расходов топлива на нагрев котла, экономия энергии и пр.

Другие технические результаты и преимущества настоящего изобретения включают обеспечение возможности послойного разрушения и удаления уже образовавшейся накипи, а также предотвращения ее нового образования.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

На Фиг.1 показан характер распределения отложений на внутренних поверхностях котла в результате применения способа согласно настоящему изобретению.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Способ согласно настоящему изобретению заключается в приложении к металлической поверхности, подверженной образованию накипи, токоотводящего электрического потенциала, достаточного для нейтрализации электростатической составляющей силы адгезии коллоидных частиц и ионов, образующих накипь, к металлической поверхности.

Термин «токоотводящий электрический потенциал» в том смысле, в каком он используется в данной заявке, означает переменный потенциал, нейтрализующий двойной электрический слой на границе металла и пароводяной среды, содержащей соли, приводящие к образованию накипи.

Как известно специалисту в данной области техники, носителями электрического заряда в металле, медленными по сравнению с основными носителями заряда -электронами, являются дислокации его кристаллической структуры, которые несут на себе электрический заряд и образуют дислокационные токи. Выходя на поверхность нагревательных труб котла, эти токи входят в состав двойного электрического слоя при образовании накипи. Токоотводящий, электрический, пульсирующий (то есть переменный) потенциал инициирует отведение электрического заряда дислокаций с поверхности металла на землю. В этом отношении он является токоотводящим дислокационные токи. В результате действия этого токоотводящего электрического потенциала двойной электрический слой разрушается, и накипь постепенно распадается и переходит в котельную воду в виде шлама, который удаляется из котла при периодических его продувках.

Таким образом, термин «токоотводящий потенциал» понятен для специалиста в данной области техники и, кроме того, известен из уровня техники (см., например, патент RU 2128804 С1).

В качестве устройства для создания токоотводящего электрического потенциала может, например, быть использовано устройство, описанное в RU 2100492 С1, которое включает в себя конвертер с частотным преобразователем и регулятором пульсирующего потенциала, а также регулятор формы импульсов. Подробное описание этого устройства дано в RU 2100492 С1. Также может быть использовано любое другое аналогичное устройство, как будет понятно специалисту в данной области техники.

Токоотводящий электрический потенциал согласно настоящему изобретению может быть приложен к любой части металлической поверхности, удаленной от основания котла. Место приложения определяется удобством и/или эффективностью применения заявленного способа. Специалист в данной области техники, используя информацию, раскрытую в настоящем описании, и используя стандартные методики испытаний, сможет определить оптимальное место приложения токоотводящего электрического потенциала.

В некоторых вариантах реализации настоящего изобретения токоотводящий электрический потенциал является переменным.

Токоотводящий электрический потенциал согласно настоящему изобретению может быть приложен в течение различных периодов времени. Время приложения потенциала определяется характером и степенью загрязненности металлической поверхности, составом используемой воды, температурным режимом и особенностями работы теплотехнического устройства и другими факторами, известными специалистам в данной обрасти техники. Специалист в данной области техники, используя информацию, раскрытую в настоящем описании и используя стандартные методики испытаний, сможет определить оптимальное время приложения токоотводящего электрического потенциала, исходя из поставленных целей, условий и состояния теплотехнического устройства.

Величина токоотводящего потенциала, требуемая для нейтрализации электростатической составляющей силы адгезии, может быть определена специалистом в области коллоидной химии на основании сведений известных из уровня техники, например из книги Дерягин Б.В., Чураев Н.В., Муллер В.М. «Поверхностные силы», Москва, "Наука", 1985. Согласно некоторым вариантам реализации величина токоотводящего электрического потенциала находится в диапазоне от 10 В до 200 В, более предпочтительно от 60 В до 150 В, еще более предпочтительно от 61 В до 150 В. Значения токоотводящего электрического потенциала в диапазоне от 61 В до 150 В приводят к разряжению двойного электрического слоя, являющегося основой электростатической составляющей сил адгезии в накипи и, как следствие, разрушению накипи. Значения токоотводящего потенциала ниже 61 В являются недостаточными для разрушения накипи, а при значениях токоотводящего потенциала выше 150 В вероятно начало нежелательного электроэрозионного разрушения металла нагревательных трубок.

Металлическая поверхность, к которой может быть применен способ согласно настоящему изобретению, может быть частью следующих теплотехнических устройств: нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе текущей эксплуатации. Данный список является иллюстративным и не ограничивает список устройств, к которым может быть применен способ согласно настоящему изобретению.

В некоторых вариантах реализации железосодержащий сплав, из которого выполнена металлическая поверхность, к которой может быть применен способ согласно к настоящему изобретению, может представляет собой сталь или другой железосодержащий материал, такой как чугун, ковар, фехраль, трансформаторную сталь, альсифер, магнико, альнико, хромистую сталь, инвар и др. Данный список является иллюстративным и не ограничивает список железосодержащих сплавов, к которым может быть применен способ согласно настоящему изобретению. Специалист в данной области техники на основании сведений, известных из уровня техники, сможет такие железосодержащие сплавы, которые могут быть использованы согласно настоящему изобретению.

Водная среда, из которой способна образовываться накипь, согласно некоторым вариантам реализации настоящего изобретения, представляет собой водопроводную воду. Водная среда также может представлять собой воду, содержащую растворенные соединения металлов. Растворенные соединения металлов могут представлять собой соединения железа и/или щелочно-земельных металлов. Водная среда также может представлять собой водную суспензию коллоидных частиц соединений железа и/или щелочно-земельных металлов.

Способ согласно настоящему изобретению удаляет ранее образовавшиеся отложения и служит безреагентным средством очистки внутренних поверхностей в ходе эксплуатации теплотехнического устройства, обеспечивая в дальнейшем безнакипный режим его работы. При этом размеры зоны, в пределах которой достигается предотвращение образования накипи и коррозии, существенно превышает размеры зоны эффективного разрушения накипи.

Способ согласно настоящему изобретению имеет следующие преимущества:

Не требует применения реагентов, т.е. экологически безопасен;

Прост в осуществлении, не требует специальных устройств;

Позволяет повысить коэффициент теплопередачи и повысить эффективность работы котлов, что существенно сказывается на экономических показателях его работы;

Может использоваться как дополнение к применяемым методам докотловой обработки воды, так и отдельно;

Позволяет отказаться от процессов умягчения и деаэрации воды, что во многом упрощает технологическую схему котельных и дает возможность значительно снизить затраты при строительстве и эксплуатации.

Возможными объектами способа могут быть водогрейные котлы, котлы-утилизаторы, закрытые системы теплоснабжения, установки по термическому опреснению морской воды, паропреобразовательные установки и пр.

Отсутствие коррозионных разрушений, накипеобразования на внутренних поверхностях открывает возможность для разработки принципиально новых конструктивных и компоновочных решений паровых котлов малой и средней мощности. Это позволит, за счет интенсификации тепловых процессов, добиться существенного уменьшения массы и габаритов паровых котлов. Обеспечить заданный температурный уровень поверхностей нагрева и, следовательно, уменьшить расход топлива, объем дымовых газов и сократить их выбросы в атмосферу.

ПРИМЕР РЕАЛИЗАЦИИ

Способ, заявленный в настоящем изобретении, был испытан на котельных заводах «Адмиралтейские верфи» и «Красный химик». Было показано, что способ согласно настоящему изобретению эффективно очищает внутренние поверхности котлоагрегатов от отложений. В ходе этих работ была получена экономия условного топлива 3-10%, при этом разброс значений экономии связан с различной степенью загрязненности внутренних поверхностей котлоагрегатов. Целью работы являлась оценка эффективности заявленного способа для обеспечения безреагентного, безнакипного режима работы паровых котлоагрегатов средней мощности в условиях качественной водоподготовки, соблюдения водно-химического режима и высокого профессионального уровня эксплуатации оборудования.

Испытание способа, заявленного в настоящем изобретении, проводилось на паровом котлоагрегате №3 ДКВр 20/13 4-ой Красносельской котельной Юго-Западного филиала ГУП «ТЭК СПб». Эксплуатация котлоагрегата проводилась в строгом соответствии с требованиями нормативных документов. На котле установлены все необходимые средства контроля параметров его работы (давления и расхода вырабатываемого пара, температуры и расхода питательной воды, давления дутьевого воздуха и топлива на горелках, разряжения в основных сечениях газового тракта котлоагрегата). Паропроизводительность котла поддерживалась на уровне 18 т/час, давление пара в барабане котла - 8,1…8,3 кг/см 2 . Экономайзер работал в теплофикационном режиме. В качестве исходной воды использовалась вода городского водопровода, которая соответствовала требованиям ГОСТ 2874-82 «Вода питьевая». Необходимо отметить, что количество соединений железа на вводе в указанную котельную, как правило, превышает нормативные требования (0,3 мг/л) и составляет 0,3-0,5 мг/л, что приводит к интенсивному зарастанию внутренних поверхностей железистыми соединениями.

Оценка эффективности способа производилась по состоянию внутренних поверхностей котлоагрегата.

Оценка влияния способа согласно настоящему изобретению на состояние внутренних поверхностей нагрева котлоагрегата.

До начала испытаний был произведен внутренний осмотр котлоагрегата и зафиксировано исходное состояние внутренних поверхностей. Предварительный осмотр котла был произведен в начале отопительного сезона, через месяц после его химической очистки. В результате осмотра выявлено: на поверхности барабанов сплошные твердые отложения темно-коричневого цвета, обладающие парамагнитными свойствами и состоящие, предположительно, из окислов железа. Толщина отложений составляла до 0,4 мм визуально. В видимой части кипятильных труб, преимущественно на стороне обращенной к топке, обнаружены не сплошные твердые отложения (до пяти пятен на 100 мм длины трубы с размером от 2 до 15 мм и толщиной до 0,5 мм визуально).

Устройство для создания токоотводящего потенциала, описанное в RU 2100492 С1, было присоединено в точке (1) к лючку (2) верхнего барабана с тыльной стороны котла (см. Фиг.1). Токоотводящий электрический потенциал был равен 100 В. Токоотводящий электрический потенциал поддерживался непрерывно в течение 1,5 месяцев. По окончании этого периода было произведено вскрытие котлоагрегата. В результате внутреннего осмотра котлоагрегата было установлено практически полное отсутствие отложений (не более 0,1 мм визуально) на поверхности (3) верхнего и нижнего барабанов в пределах 2-2,5 метров (зона (4)) от лючков барабанов (точки присоединения устройства для создания токоотводящего потенциала (1)). На удалении 2,5-3,0 м (зона (5)) от лючков отложения (6) сохранились в виде отдельных бугорков (пятен) толщиной до 0,3 мм (см. Фиг.1). Далее, по мере продвижения к фронту, (на удалении 3,0-3,5 м от лючков) начинаются сплошные отложения (7) до 0,4 мм визуально, т.е. на этом удалении от точки подключения устройства эффект способа очистки согласно настоящего изобретения практически не проявился. Токоотводящий электрический потенциал был равен 100 В. Токоотводящий электрический потенциал поддерживался непрерывно в течение 1,5 месяцев. По окончании этого периода было произведено вскрытие котлоагрегата. В результате внутреннего осмотра котлоагрегата было установлено практически полное отсутствие отложений (не более 0,1 мм визуально) на поверхности верхнего и нижнего барабанов в пределах 2-2,5 метров от лючков барабанов (точки присоединения устройства для создания токоотводящего потенциала). На удалении 2,5-3,0 м от лючков отложения сохранились в виде отдельных бугорков (пятен) толщиной до 0,3 мм (см. Фиг.1). Далее, по мере продвижения к фронту (на удалении 3,0-3,5 м от лючков), начинаются сплошные отложения до 0,4 мм визуально, т.е. на этом удалении от точки подключения устройства эффект способа очистки согласно настоящего изобретения практически не проявился.

В видимой части кипятильных труб, в пределах 3,5-4,0 м от лючков барабанов, наблюдалось практически полное отсутствие отложений. Далее, по мере продвижения к фронту, обнаружены не сплошные твердые отложения (до пяти пятен на 100 п.мм с размером от 2 до 15 мм и толщиной до 0,5 мм визуально).

В результате этого этапа испытаний был сделан вывод о том, что способ согласно настоящему изобретению без применения каких-либо реагентов позволяет эффективно разрушать ранее образовавшиеся отложения и обеспечивает безнакипный режим работы котлоагрегата.

На следующем этапе испытаний устройство для создания токоотводящего потенциала было присоединено в точке «В» и испытания продолжались в течение еще 30-45 суток.

Очередное вскрытие котлоагрегата было произведено после 3,5 месяцев непрерывной эксплуатации устройства.

Осмотр котлоагрегата показал, что оставшиеся ранее отложения полностью разрушены и лишь в незначительном количестве сохранились на нижних участках кипятильных труб.

Это позволило сделать следующие выводы:

Размеры зоны, в пределах которой обеспечивается безнакипный режим работы котлоагрегата, существенно превышают размеры зоны эффективного разрушения отложений, что позволяет последующим переносом точки подключения токоотводящего потенциала произвести очистку всей внутренней поверхности котлоагрегата и далее поддерживать безнакипный режим его работы;

Разрушение ранее образовавшихся отложений и предотвращение образования новых обеспечивается различными по характеру процессами.

По результатам осмотра было принято решение продолжить испытания до конца отопительного периода с целью окончательной очистки барабанов и кипятильных труб и выяснения надежности обеспечения безнакипного режима работы котла. Очередное вскрытие котлоагрегата было произведено через 210 суток.

Результаты внутреннего осмотра котла показали, что процесс очистки внутренних поверхностей котла в пределах верхнего и нижнего барабанов и кипятильных труб завершился практически полным удалением отложений. На всей поверхности металла образовалось тонкое плотное покрытие, имеющее черный цвет с синей побежалостью, толщина которого даже в увлажненном состоянии (практически сразу после вскрытия котла) не превышала 0,1 мм визуально.

Одновременно подтвердилась надежность обеспечения безнакипного режима работы котлоагрегата при применении способа настоящего изобретения.

Защитное действие магнетитовой пленки сохранялось до 2-х месяцев после отсоединения устройства, что вполне достаточно для обеспечения консервации котлоагрегата сухим способом при переводе его в резерв или на ремонт.

Хотя настоящее изобретение было описано в отношении различных конкретных примеров и вариантов реализации изобретения, следует понимать, что это изобретение не ограничено ими и что оно может быть реализовано на практике в рамках объема приведенной ниже формулы изобретения

1. Способ предотвращения образования накипи на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь, включающий приложение к указанной металлической поверхности токоотводящего электрического потенциала в диапазоне от 61 В до 150 В для нейтрализации электростатической составляющей силы адгезии между указанной металлической поверхностью и коллоидными частицами и ионами, образующими накипь.

Изобретение относится к теплоэнергетике и может быть использовано для защиты от накипи и коррозии нагревательных труб паровых и водогрейных котлов, теплообменников, бойлерных установок, испарителей, теплотрасс, систем отопления жилых домов и промышленных объектов в процессе эксплуатации. Способ предотвращения образования накипи на металлической поверхности, выполненной из железосодержащего сплава и находящейся в контакте с пароводяной средой, из которой способна образовываться накипь, включает приложение к указанной металлической поверхности токоотводящего электрического потенциала в диапазоне от 61 В до 150 В для нейтрализации электростатической составляющей силы адгезии между указанной металлической поверхностью и коллоидными частицами и ионами, образующими накипь. Технический результат - повышение эффективности и производительности работы водогрейных и паровых котлов, увеличение эффективности теплопередачи, обеспечение послойного разрушения и удаления образовавшейся накипи, а также предотвращение ее нового образования. 2 з.п. ф-лы, 1 пр., 1 ил.

Морской сайт Россия нет 05 октября 2016 Создано: 05 октября 2016 Обновлено: 05 октября 2016 Просмотров: 5363

Виды коррозии. В процессе работы элементы парового котла подвергаются воздействию агрессивных сред - воды, пара и дымовых газов. Различают коррозию химическую и электрохимическую.

Химическая коррозия ,вызванная паром или водой, разрушает металл равномерно по всей поверхности. Скорость такой коррозии в современных судовых котлах низкая. Более опасна местная химическая коррозия, вызываемая агрессивными химическими соединениями, содержащимися в отложениях золы (серы, окислов ванадия и т. п.).

Наиболее распространенной и опасной является электрохимическая коррозия , протекающая в водных растворах электролитов при возникновении электрического тока, вызванного разностью потенциалов между отдельными участками металла, отличающимися химической неоднородностью, температурой или качеством обработки.
Роль электролита выполняют вода (при внутренней коррозии) или сконденсировавшиеся пары воды в отложениях (при наружной коррозии).

Возникновение таких микрогальванических пар на поверхности труб приводит к тому, что ион-атомы металла переходят в воду в виде положительно заряженныхионов, а поверхность трубы в этом месте приобретает отрицательный заряд. Если различие в потенциалах таких микрогальванических пар незначительно, то на границе металл-вода постепенно создается двойной электрический слой, который тормозит дальнейший ход процесса.

Однако в большинстве случаев потенциалы отдельных участков различны, что обусловливает возникновение ЭДС, направленной от большего потенциала (анода) к меньшему (катоду).

При этом с анода в воду переходят ион-атомы металла, а на катоде накапливаются избыточные электроны. В результате ЭДС и, следовательно, интенсивность процесса разрушения металла резко снижаются.

Это явление называется поляризацией. Если потенциал анода уменьшается в результате образования защитной оксидной пленки или роста концентрации ионов металла в районе анода, а потенциал катода практически не изменяется, то поляризация носит название анодной.

При катодной поляризации в растворе у катода резко падает концентрация ионов и молекул, способных удалять избыточные электроны с поверхности металла. Из этого следует, что основным моментом борьбы с электрохимической коррозией является создание таких условий, когда будут поддерживаться оба вида поляризации.
Практически достигнуть этого невозможно, так как в котловой воде всегда имеются деполяризаторы - вещества, вызывающие нарушение процессов поляризации.

К деполяризаторам относятся молекулы О 2 и СО 2 , ионы Н + , Сl - и SO - 4 , а также окислы железа и меди. Растворенные в воде СО 2 , Cl - и SO - 4 тормозят образование на аноде плотной защитной оксидной пленки и тем самым способствуют интенсивному протеканию анодных процессов. Ионы водорода Н + снижают отрицательный заряд катода.

Влияние кислорода на скорость коррозии стало проявляться в двух противоположных направлениях. С одной стороны, кислород увеличивает скорость коррозионного процесса, так как является сильным деполяризатором катодных участков, с другой оказывает пассивирующее действие на поверхность.
Обычно детали котла, изготовленные из стали, имеют достаточно прочную первоначальную оксидную пленку, которая защищает материал от воздействия кислорода до тех пор, пока не будет разрушена под действием химических или механических факторов.

Скорость гетерогенных реакций (к которым относится и коррозия) регулируется интенсивностью следующих процессов: подводом к поверхности материала реагентов (в первую очередь деполяризаторов); разрушением защитной оксидной пленки; удалением продуктов реакции от места ее протекания.

Интенсивность же этих процессов во многом определяется гидродинамическими, механическими и тепловыми факторами. Поэтому меры по снижению концентрации агрессивных химических реагентов при высокой интенсивности двух других процессов, как показывает опыт эксплуатации котлов, обычно малоэффективны.

Отсюда следует, что решение проблемы предотвращения коррозионных повреждений должно быть комплексным, когда учитываются все факторы, влияющие на исходные причины разрушения материалов.

Электрохимическая коррозия

В зависимости от места протекания иучаствующих в реакциях веществ различают следующие виды электрохимической коррозии:

  • кислородную (и ее разновидность - стояночную),
  • подшламовую (иногда называемую „ракушечной"),
  • межкристаллитную (щелочная хрупкость котельных сталей),
  • щелевую и
  • сернистую.

Кислородная коррозия наблюдается в экономайзерах, арматуре, питательных и опускных трубах, пароводяных коллекторах и внутриколлекторных устройствах (щитах, трубах, пароохладителях и т.п.). Особенно сильно подвержены кислородной коррозии змеевики второго контура двухконтурных котлов, утилизационных котлов и паровых воздухоподогревателей. Кислородная коррозия протекает во время действия котлов и зависит от концентрации кислорода, растворенного в котловой воде.

Скорость кислородной коррозии в главных котлах низкая, что обусловлено эффективной работой деаэраторов и фосфатно-нитратным водным режимом. Во вспомогательных водотрубных котлах она нередко достигает 0,5 - 1 мм/год, хотя в среднем лежит в пределах 0,05 - 0,2 мм/год. Характер повреждения котельных сталей - язвы небольших размеров.

Более опасной разновидностью кислородной коррозии является стояночная коррозия , протекающая в период бездействия котла. В силу специфики работы все судовые котлы (а вспомогательные особенно) подвержены интенсивной стояночной коррозии. Как правило, стояночная коррозия не приводит к отказам котла, однако металл, подвергшийся коррозии во время остановок, при прочих равных условиях более интенсивно разрушается при работе котла.

Основной причиной возникновения стояночной коррозии является попадание кислорода в воду, если котел заполнен, или в пленку влаги на поверхности металла, если котел осушен. Большую роль при этом играют хлориды и NaOH, содержащиеся в воде, и водорастворимые отложения солей.

При наличии в воде хлоридов интенсифицируется равномерная коррозия металла, а если в ней содержится незначительное количество щелочей (меньше 100 мг/л), то коррозия локализуется. Чтобы избежать стояночной коррозии при температуре 20 - 25 °С в воде должно содержаться до 200 мг/л NaOH.

Внешние признаки коррозии с участием кислорода: локальные язвы небольшого размера (рис. 1, а), заполненные продуктами коррозии бурого цвета, которые образуют бугорки над язвами.

Удаление кислорода из питательной воды является одним из важных мероприятий по снижению кислородной коррозии. С 1986 г. содержание кислорода в питательной воде для судовых вспомогательных и утилизационных котлов ограничивается 0,1 мг/л.

Однако и при таком кислородосодержании питательной воды в эксплуатации наблюдаются коррозионные повреждения элементов котла, что свидетельствует о преобладающем влиянии процессов разрушения оксидной пленки и вымывании продуктов реакции из очагов коррозии. Наиболее наглядным примером, иллюстрирующим влияние этих процессов на коррозионные повреждения, являются разрушения змеевиков утилизационных котлов с принудительной циркуляцией.

Рис. 1. Повреждения при кислородной коррозии

Коррозионные повреждения при кислородной коррозии обычно строго локализованы: на внутренней поверхности входных участков (см. рис. 1, а), в районе гибов (рис. 1, б), на выходных участках и в колене змеевика (см. рис. 1, в), а также в пароводяных коллекторах утилизационных котлов (см. рис. 1, г). Именно на этих участках (2 - область пристенной кавитации) гидродинамические особенности потока создают условия для разрушения оксидной пленки и интенсивного вымывания продуктов коррозии.
Действительно, любые деформации потока воды и пароводяной смеси сопровождаются возникновением кавитации в пристенных слоях расширяющегося потока 2, где образующиеся и тут же схлопывающиеся пузырьки пара обусловливают разрушение оксидной пленки вследствие энергии гидравлических микроударов.
Этому способствуют также знакопеременные напряжения в пленке, вызванные вибрацией змеевиков и колебаниями температуры и давлений. Повышенная же локальная турбулизация потока на этих участках вызывает активное вымывание продуктов коррозии.

На прямых выходных участках змеевиков оксидная пленка разрушается из-за ударов о поверхность капелек воды при турбулентных пульсациях потока пароводяной смеси, дисперсно-кольцевой режим движения которой переходит здесь в дисперсный при скорости потока до 20-25 м/с.
В этих условиях даже невысокое кислородосодержание (~ 0,1 мг/л) обусловливает интенсивное разрушение металла, что приводит к появлению свищей на входных участках змеевиков утилизационных котлов типа Ла Монт через 2-4 года эксплуатации, а на остальных участках - через 6-12 лет.

Рис. 2. Коррозионные повреждения змеевиков экономайзеров утилизационных котлов КУП1500Р теплохода "Индира Ганди".

В качестве иллюстрации к изложенному рассмотрим причины повреждения змеевиков экономайзеров двух утилизационных котлов типа КУП1500Р, установленных на лихтеровозе «Индира Ганди» (типа "Алексей Косыгин"), который вступил в эксплуатацию в октябре 1985 г. Уже в феврале 1987 г. из-за повреждений заменены экономайзеры обоих котлов. Через 3 года и в этих экономайзерах появляются повреждения змеевиков, расположенные на участках до 1-1,5 м от входного коллектора. Характер повреждений свидетельствует (рис. 2, а, б) о типичной кислородной коррозии с последующим усталостным разрушением (поперечные трещины).

Однако природа усталости на отдельных участках различна. Появление трещины (а ранее - растрескивание оксидной пленки) в районе сварного шва (см. рис. 2, а) является следствием знакопеременных напряжений, обусловленных вибрацией пучка труб и конструктивной особенностью узла соединения змеевиков с коллектором (к изогнутому штуцеру диаметром 22x3 приварен конец змеевика диаметром 22x2).
Разрушение же оксидной пленки и образование усталостных трещин на внутренней поверхности прямых участков змеевиков, удаленных от входа на 700-1000 мм (см. рис. 2, б), обусловлены знакопеременными термическими напряжениями, возникающими в период ввода котла в действие, когда на горячую поверхность подается холодная вода. При этом действие термических напряжений усиливается тем, что оребрение змеевиков затрудняет свободное расширение металла трубы, создавая дополнительные напряжения в металле.

Подшламовая коррозия обычно наблюдается в главных водотрубных котлах на внутренних поверхностях экранных и парообразующих труб притопочных пучков, обращенных к факелу. Характер подшламовой коррозии - язвы овальной формы с размером по большой оси (параллельной оси трубы) до 30-100 мм.
На язвах имеется плотный слой окислов в виде „ракушек" 3 (рис. 3). Подшламовая коррозия протекает в присутствии твердых деполяризаторов - окислов железа и меди 2, которые осаждаются на наиболее теплонапряженных участках труб в местах активных центров коррозии, возникающих при разрушении оксидных пленок.
Сверху образуется рыхлый слой накипи и продуктов коррозии 1. Образующиеся „ракушки" из продуктов коррозии прочно сцеплены с основным металлом и могут быть удаленытолько механическим путем. Под „ракушками" ухудшается теплообмен, что приводит к перегреву металла и появлению выпучин.
Для вспомогательных котлов этот вид коррозии не характерен, но при высоких тепловых нагрузках и соответствующих режимах водообработки не исключено появление подшламовой коррозии и в этих котлах.