Ремонт Дизайн Мебель

Эжекторы в вентиляции покрасочной камеры. Опыт проектирования естественно-механической вентиляции в жилых зданиях с теплыми чердаками Для чего нужен эжектор в вентиляции

Механическая общеобменная вентиляция может быть приточной, вытяжной и приточно-вытяжной, с рециркуляцией и без рециркуляции. При этой системе вентиляции центробежные (рис. 5, а), осевые вентиляторы (рис. 5,6) или эжекторные установки (рис. 5, в), крышные вентиляторы (рис. 5, г, д) перемещают воздух по воздухопроводам с ответвлениями, имеющими насадки и заслонки для регулирования притока или удаления воздуха.

Вентиляторы применяют в приточных, вытяжных и приточно-вытяжных системах, эжекторные установки - в основном в вытяжных системах вентиляции.

Эжекторные установки используют в производственных помещениях, в которых вьщеляются взрывоопасные пары и газы и где установка вентилятора обычного типа, вызывающего при повреждении частей вентилятора искрение и взрыв, не допускается, например при удалении загрязнений из отделений для зарядки аккумуляторов, из окрасочных кабин при отсутствии гидроочистки.

Приведение в движение воздуха эжекцией заключается в том, что в трубу вставляют одно или несколько сопл, в них под давлением подают воздух из компрессора или вентилятора, пар или воду, которые увлекают за собой загрязненный воздух. КПД эжекторной установки будет зависеть от ее конструктивных особенностей.

Назначение приточных систем вентиляции - возмещать воздух, удаляемый местными отсосами и пневмотранспортом в цехах и отделениях (станочных, отделочных, сборочных, древесностружечных плит и др.) и расходуемый на технологические нужды.

При приточной общеобменной системе вентиляции (рис. 6, а) воздухоприемник для забора чистого воздуха, который подается в помещение вентилятором, устанавливают вне здания. Воздух забирают на высоте от земли не менее 2,5 м. Очищенный и подогретый до необходимой температуры воздух в помещении распределяется по системе каналов - воздуховодов.

Воздух подается в рабочую зону (в пространство от уровня пола до уровня дыхания 1,8...2 м) с возможно малыми скоростями. Нельзя подавать воздух через зоны, в которых он загрязнен.

Вытяжная общеобменная система вентиляции (рис. 6, б) характеризуется тем, что через сеть воздуховодов 13 и 12 загрязненный воздух удаляется вентилятором 11. Чистый воздух в этом случае подсасывается естественным путем через неплотности дверей, окон, фонарей, щели, поры строительных конструкций. Вытяжные отверстия воздуховодов располагают на различной высоте, которую устанавливают в зависимости от назначения помещений и плотности удаляемых загрязнений. Например, если удаляют загрязнения, которые тяжелее воздуха (пары фенола, бензина), приемники пара или газа располагают у пола, а если легче воздуха - у потолка. В соответствии с СН 245-71, СНиП П-33-75, ГОСТ 12.4.021-75 и пожарными нормами не разрешается объединять в одну общую вытяжную установку отсосы легкоконденсирующихся паров и газов, а также отсосы веществ, которые при смешении могут создавать ядовитую воспламеняющуюся или взрывоопасную механическую смесь или химические соединения. Например, не допускается совмещать отсосы от пневмотранспортных установок с отсосами от окрасочных и сушильных камер; от окрасочных кабин, когда в одной из кабин применяются нитроцеллюлозные, а в другой полиэфирные лаки. Запыленный или загрязненный ядовитыми парами или газами воздух перед выбрасыванием в атмосферу очищают и обезвреживают в специальных установках.

Приточно-вытяжная система вентиляции без рециркуляции (рис. 6, в) состоит из приточной и вытяжной системы, одновременно подающих чистый воздух и удаляющих загрязненный (предварительно очищенный) в атмосферу. Такая система вентиляции считается наилучшей при условии, когда воздух, удаляемый вытяжными общеобменными и местными системами вентиляции, будет компенсирован приточной системой вентиляции.

Приточно-вытяжная система вентиляции в сообщающихся помещениях должна быть устроена таким образом, чтобы исключалась возможность поступления воздуха из помещений с большим выделением вредностей или с наличием взрывоопасных газов, паров и пыли в помещениях, где этих вредностей меньше или нет.

Вентиляция с рециркуляцией (рис. 6,г) представляет собой замкнутую приточно-вытяжную вентиляцию. Воздух, отсасываемый вытяжной системой, вторично подается в помещение с помощью приточной вентиляции. Рециркулируемый воздух частично пополняется свежим. Не допускается применять рециркуляцию в помещениях с токсическими пожаро- и взрывоопасными загрязнениями воздуха.

Во всех системах вентиляции воздухозаборное устройство устанавливают с учетом розы ветров (с наветренной стороны к выбрасываемым шахтам), но не ближе 10...20 м от выбрасывающих отверстий. Труба, через которую использованный воздух выпускают в атмосферу, должна быть расположена не менее чем на 1 м выше конька крыши.

МЕТОДИКА РАСЧЕТА ЭЖЕКТОРНОГО ВОЗДУХОРАСПРЕДЕЛИТЕЛЯ ДЛЯ СИСТЕМ ВЕНТИЛЯЦИИ ЖИВОТНОВОДЧЕСКИХ ПОМЕЩЕНИЙ

М. М. АЧАПКИН, кандидат технических наук

Общеизвестно, что с точки зрения технико-экономических показателей для обеспечения оптимальных микроклиматических условий в животноводческих помещениях наиболее приемлемыми являются системы вентиляции с регулируемым в зависимости от изменения внешних метеорологических условий воздухообменом. Однако процесс регулирования воздухообмена с учетом конструктивной особенности традиционных систем вентиляции является сложнейшей инженерной задачей.

Решение данной задачи значительно упрощается при использовании систем вентиляции для подачи приточного воздуха сосредоточенными струями в верхнюю зону помещения. При этом в качестве аппарата регулирования применяется эжекторный воздухораспределитель (ЭВ), представляющий собой простейший эжектор низкого давления в комплекте с приточной шахтой (рис. 1). Движущей силой процесса регулирования приточного воздуха явля-

Р и с. 1. Принципиальная схема работы эжектор ного воздухораспределителя: 1 - сопло; 2 - отверстие для подсасываемого воздуха; 3 - камера смешения; 4 - приточная шахта;

5 - дроссельный клапан

ется энергия воздушного потока, выходящего из сопла.

Сущность расчета любого инженерно-технического средства, в том числе и ЭВ, заключается, как известно, в определении его геометрических характеристик для обеспечения требуемых параметров обрабатываемой среды в зависимости от заданных. В нашем случае в соответствии с теорией развития струй в замкнутом пространстве заданными являются параметры приточного воздуха на выходе из камеры смешения. Таким образом, зная требуемый расход воздуха на выходе из ЭВ и площадь поперечного сечения животноводческого помещения, по формуле, представленной в , можно определить диаметр камеры смешения (приточного патрубка ЭВ) ¿3:

где г^р об - максимально допустимая

скорость обратного потока воздуха, м/с;

Lc - секундный расход воздуха, м3/с;

площадь поперечного сечения помещения, м2.

Известно, что в эжекторах движения подсасываемого потока перемещение потоков в смесительной камере, а также их перемешивание происходят за счет кинетической энергии потока рабочей струи, вытекающей из сопла . Следовательно, для нормальной работы ЭВ нужно создать на выходе из сопла такое скоростное давление Р\у 12/2, величина которого - была бы

равна (или превышала) сумме требуемого скоростного давления подсасываемого потока, скоростного давления на

© М. М. Ачапкин, 2001

выходе из камеры смешения, потерь давления во всасывающих воздуховодах ДР2 и в камере смешения ДР3,

Р3У3 2/2 + Ар2 + Ар3,

где у2, уз - скорость воздуха в характерных сечениях ЭВ, м/с;

Яь Я2> Ръ - плотность воздуха в

характерных сечениях, кг/м3.

Задаваясь условием равенства плотностей воздуха в характерных сечениях ЭВ (р\ - Р2 - Рз) и учитывая, что количество воздуха на выходе из камеры смешения должно быть равным

количеству воздуха на выходе из сопла Ь\ и на плоскости всасывания 1^2 з = А + ^2) > путем несложных преобразований можно получить ориентировочное значение скорости воздуха на выходе из_сопла:

Принимая живое сечение подсасываемого потока воздуха /2 = ^з ~ и выражая значения расходов в характерных сечениях через соответствующие скорости и их площади, найдем:

В соответствии с полученными данными по теории смешения потоков уточняются скорость воздуха в характерных сечениях и по общеизвестным формулам рассчитываются аэродинамические характеристики ЭВ, в том числе потери давления во всасывающих воз-духоотводах ДР2 и в камере смешения ДР3.

Следует отметить, что значение оптимальной длины камеры смешения для инженерных расчетов удобнее определять по полученному нами на основании экспериментальных исследований графику зависимости степени стеснения струи и параметра длины камеры смешения ПРИ Раз~

личных значениях коэффициента подмешивания установки (3, представленного на рис. 2.

0,5 1,01,5 2,0 2,53,03,54,04,5 5,0 5,5

Рис. 2. График натуральных значений х\ и *2 при различных значениях коэффициента

подмешивания

Если результатами расчетов подтверждается с учетом запаса давления порядка 10... 15 % выражение (2), то расчет ЭВ можно считать законченным.

Процесс регулирования воздухообмена осуществляется изменением количества подсасываемого потока в за~ висимости от значений температуры наружного воздуха с помощью дроссельного клапана приточной шахты.

В соответствии с вышеизложенным сущность методики расчета ЭВ заключается в следующем:

Определяется требуемый воздухообмен при характерных значениях температуры наружного воздуха от ¿„ах до

т1П и по формуле /3 = Ь\ рассчиты-

вается требуемый коэффициент подмешивания установки;

По формуле (1) определяется диаметр камеры смешения (приточного патрубка) для случая максимальной производительности установки по воз-Духу;

Определяются геометрические и аэродинамические характеристики потоков в характерных сечениях ЭВ. При этом расход воздуха на выходе из сопла принимается равным требуемому воздухообмену при

Рассчитывается процесс регулирования воздухообмена в зависимости от значений наружной температуры в пределах от ¿„ах до

оборудование для приготовления

воздуха и его подачи подбирается по обеспечения требуемого воздухообмена

общепринятой методике из условия при

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Бахарев В. А., Трояновский В. Н. Основы 2. Каменев П. Н. Отопление и вентиляция:

проектирования и расчета отопления и вентиля- В 2 ч. 4. 2. Вентиляция. М.: Стройиздат, 1966.

ции с сосредоточенным выпуском воздуха. М.: 480 с. Профиздат, 1958. 216 с.

Поступила 25.12.2000.

ВЫБОР РЕЖИМОВ РАБОТЫ МАШИННО-ТРАКТОРНЫХ АГРЕГАТОВ С ПОМОЩЬЮ КОМПЬЮТЕРНОЙ ТЕХНИКИ

А. М. КАРПОВ, кандидат технических наук,

Т. В. ВАСИЛЬКИНА, кандидат математических наук,

Д. А. КАРПОВ, инженер,

А. В. КОЗИН, инженер

Известно, что все сельскохозяйственные операции выполняются машинно-тракторными агрегатами (МТА), представляющими собой сочетание энергетической части, передающего механизма и рабочей машины.

Каждый инженер знает, насколько бывает трудно правильно подобрать энергетическое средство и рабочую (или рабочие) машину, чтобы получить высокое качество, максимальную производительность, наименьший удельный расход и наибольшее значение коэффициента использования силы тяги на крюке, т. е. максимально использовать тягово-сцепные свойства того или иного энергетического средства.

Длительное время такие расчеты производились вручную, что требовало хороших инженерных знаний и значительного времени.

Специалистам приходилось комплектовать МТА, исходя из опыта предшествующего поколения или пользуясь справочными данными. А если расчеты и производились, то по упрощенной

схеме, которую можно представить в следующем виде:

Устанавливается диапазон возможного скоростного режима (для данной рабочей машины);

Определяется величина тягового усилия на выбранных скоростях для данных условий;

Рассчитывается максимальная ширина захвата агрегата на выбранных передачах;

Определяется число машин (или корпусов плугов), исходя из ширины захвата машины (или корпуса плуга);

Находится рабочее сопротивление;

Вычисляется степень загрузки трактора по тяговому усилию.

Отметим, что величина максимальной часовой производительности не определяется и тем более ее проверка в производственных условиях не производится. Такой расчет не мог не привести к ошибочному решению. В решена задача по выбору оптимального энергетического средства по наименьшей энергоемкости. На кафедре мо-

© А. М. Карпов, Т. В. Василькина, Д. А. Карпов, А. В. Козин, 2001

Для подбора центробежных вентиляторов, кроме производительности и давления, необходимо выбрать их конструктивное исполнение.

Полное давление Рп, развиваемое вентилятором, расходуется на преодоление сопротивлений во всасывающем и нагнетательном воздуховодах, возникающих при перемещении воздуха:

РП = ΔРвс+ ΔРн = ΔР,

Где ΔРвс и ΔРн — потери давления во всасывающем и нагнетательном воздуховодах; ΔР — суммарные потери давления.

Эти потери давления состоят из потерь давления на трение (за счет шероховатости воздуховодов) и в местных сопротивлениях (повороты, изменения сечения, фильтры, калориферы, и т. д.).

Потери ДР (кгс/м2) определяют суммированием потерь давления ΔР, на отдельных расчетных участках:

где ΔРТрi и ΔРмсi соответственно потери давления на трение и в местных сопротивлениях на расчетном участке воздуховода; ΔРуд — потери давления на трение на 1 пог. м. длины; l — длина расчетного участка воздуховода, м; Σζ — сумма коэффициентов местных сопротивлений на расчетном участке; v — скорость воздуха в воздуховоде, м/с; р — плотность воздуха, кг/м3.

Величины ΔРуд и ζ приводятся в справочниках.

Порядок расчета вентиляционной сети следующий.

1. Выбирают конфигурацию сети в зависимости от размещения помещений, установок, оборудования, которые должна обслуживать вентиляционная система.

2. Зная требуемый расход воздуха на отдельных участках воздуховодов, определяют их поперечные размеры, исходя из допустимых скоростей движения воздуха (порядка 6—10 м/с).

3. По формуле (3) рассчитывают сопротивление сети, причем за расчетную принимают наиболее протяженную магистраль.

4. По каталогам выбирают вентилятор и электродвигатель.

5. Если сопротивление сети оказалось слишком большим, размеры воздуховодов увеличивают и производят перерасчет сети.

Зная, какую производительность и полное давление должен развивать вентилятор, производят выбор вептилятора по его аэродинамической характеристике.

Такая характеристика вентилятора графически выражает связь между основными параметрами — производительностью, давлением, мощностью и к. п. д. при определенных скоростях вращения п, об/мин. Например, требуется подобрать вентилятор производительностью L = 6,5 тыс. м3/ч при Р = 44 кгс/м2. Для выбранного центробежного вентилятора Ц4-70 № 6 требуемый режим работы будет соответствовать точке А (рис. 8, а). По этой точке находят скорость вращения колеса п — 900 об/мин и к. п. д. η = 0,8.

Наиболее важна зависимость между давлением и производительностью — так называемая напорная характеристика вентилятора Р — L. Если на эту характеристику наложить характеристику сети (зависимость сопротивления от расхода воздуха) (рис. 8, б), то точка пересечения этих кривых (рабочая точка) определит давление и производительность вентилятора при работе в данной сети. При увеличении сопротивления сети, что может произойти, например при засорении фильтров, рабочая точка сместится вверх и вентилятор будет подавать воздуха меньше, чем это нужно (L2 < L1).

При выборе типа и номера центробежных вентиляторов необходимо руководствоваться тем, что вентилятор должен иметь наиболее высокий к. п. д., относительно небольшую скорость вращения (u=πDn/60), а также чт°бы скорость вращения колеса позволяла осуществить соединение с электродвигателем на одном валу.

Рис. 8. Диаграммы расчета вентиляционной сети: а — аэродинамическая характеристика вентилятора; б — работа вентилятора в сети

В тех случаях, когда эксплуатируемый вентилятор не обеспечивает необходимой производительности, можно ее увеличить, помня, что производительность вентилятора прямо пропорциональна скорости вращения колеса, полное давление — квадрату скорости вращения, а потребляемая мощность — кубу скорости вращения:

Разновидностью центробежных вентиляторов являются так называемые диаметральные вентиляторы (см. рис. 7, г). Эти вентиляторы имеют широкие колеса и их производительность выше, чем у центробежных вентиляторов, но к. п. д. ниже вследствие возникновения внутренних циркуляционных потоков.

Установочная мощность электродвигателя для вентилятора (кВт) рассчитывается по формуле

где L — производительность вентилятора, м3/ч; Р — полное давление вентилятора, кгс/м2; ηв — к. п. д. вентилятора (принимается по

характеристике вентилятора); ηп — к. п. д. привода, который при плоскоременной передаче равен 0,9; при клиноременном — 0,95; при непосредственной установке колеса на валу электродвигателя — 1; при установке колеса через муфту — 0,98; к — коэффициент запаса (к = 1,05 1,5).

Эжекторы применяют в вытяжных системах в тех случаях, когда необходимо удалить очень агрессивную среду, пыль, способную к взрыву не только от удара, но и от трения или легко воспламеняющиеся и взрывоопасные газы (ацетилен, эфир и т. д.).

Для покрасочной камеры очень важным является микроклимат внутри бокса. Чтобы специалисту можно было комфортно работать, а краска без проблем ложилась на поверхность, требуется установить такую систему, которая сможет удалять отработанные потоки воздуха из помещения и направлять их в выходные каналы. Суть работы эжектора заключается в том, что чистый воздух, подаваемый вентиляционную камеру, перемешивается с взрывоопасными парами и вредными примесями. В результате смена отработанного воздуха выполняется намного быстрее.

Устройство эжекторов

Чтобы понимать устройство эжекторов, следует разобраться в том, как происходит удаление уже отработанного воздуха в покрасочном боксе. Для максимально эффективного удаления отработанного потока воздуха, используются эжекторные установки. Конструкция изготовляется из листовой стали, толщина материала составляет 1,2 мм. Монтаж выполняется при помощи сварки, хотя использоваться могут и разъемные устройства.

Что касается отдельных элементов, то выделить можно следующее:

  1. Есть сопло, которое предназначено для преобразование потенциальной энергии потока в кинетическую. На практике это нужно для создания высокоскоростной струи.
  2. Пассивный воздушный поток засасывается за счет создания вакуума. Отработанный воздух попадает в приемную камеру.
  3. Рабочая камера эжектора нужно для смешения активного и пассивного потока, где присутствуют вредные примеси и опасные для человека газы. В результате энергообмена получается один поток с одинаковым по силе напором.
  4. Поток попадает в диффузор, где происходит одновременное снижение скорости и увеличение давления.

Принцип работы

Зависит от многих составляющих - от герметичности камеры в целом, от фильтров, за чистотой которых нужно следить, от вентиляторов. Но все перечисленные элементы будут бесполезными, если эжектор не будет работать так, как это нужно. Все держится на потоке рабочей среды, который поступает в приемную камеру с большой скоростью. Благодаря такой высокой скорости потока, создается вакуум, затягивающий отработанный воздух.

Дальнейшее действие механизма было описано при разборе составных частей эжектора. В камере смешивания сталкиваются два потока, один из которых содержит вредные примеси. После этого поток попадает в диффузор и уходит по вытяжным каналам.

Особенности установки

Основная проблема при установке системы вентиляции, и эжекторов в частности, не в самом процессе монтажа, а в грамотных расчетах. Покрасочную камеру нужно грамотно проектировать, чтобы установленная система вентиляции справлялась с поставленной нагрузкой. Признаком правильной проектировки является превышение объемов поступающего чистого воздуха в сравнении с потоками, уходящими через вытяжные отверстия.

В процессе проектирование нужно понять, каким будет воздушный обмен. На этот показатель влияет и размеры покрасочного бокса, и количество одновременно работающего персонала. По итогу специалист выведет значение кратности обмена, то есть, количество полной смены объемов воздуха за определенное время. При выполнении покраски больших изделий, как того же автомобиля, нужно придерживаться показателя кратности в сто раз.

Также потребуется грамотно провести выполнение расчетов сечений воздуховодов. Учитывая необходимость работы с воздушными потоками, имеющими взрывоопасные примеси, нужно устанавливать воздуховоды из жароустойчивых материалов.

Специфика обслуживания

Обслуживание эжекторов выполняется в комплексе, вместе с обслуживанием всей системы вентиляции в целом. Под обслуживанием принято понимать регулярный осмотр фильтров, которые забиваются частицами пыли и остатками краски. Чистка фильтров выполняется каждые 250 часов работы, но только один раз. По истечение 500 рабочих часов фильтр заменяется на новый.

Что касается эжекторов, то они тоже подлежать очистке. Наиболее подвержен загрязнению именно диффузор. Для его очистки принято использовать небольшой пластиковый стержень. При обслуживании эжектора нельзя использовать предметы с острыми кромками. Они могут повредить поверхность диффузора, нарушив его герметичность.

Про необходимость выбора качественной эжекторной установки нужно знать, что от ее работы полностью зависит и качество окраски поверхностей. Недостатки системы отразятся на качестве выполняемых работ. Если нет возможности самостоятельно проконтролировать качество элементов и правильность их установки, то следует обратиться за услугами в сертифицированные компании, которые специализируются в этой сфере - таким образом можно получить гарантию того, что все работы будут произведены правильно.

Использование: в горной промышленности при проветривании подземных выработок. Сущность изобретения: вентиляторная установка включает размещенный в эжекторном канале горной выработки вентилятор. Установка снабжена установленной вдоль продольной оси горной выработки обечайкой, размещенной между стенками обечайки и стенками горной выработки перемычкой и дополнительным вентилятором. Основной вентилятор установлен на противоположном конце обечайки. Оба вентилятора установлены с зазором по отношению к стенкам обечайки выходными каналами навстречу друг другу с возможностью перемещения вдоль продольной оси обечайки. 1 ил.

Изобретение относится к вентиляторостроению и предназначено для обеспечения проветривания системы горных выработок и систем вентиляционных сооружений. Известна вентиляторная установка, работающая на трубопровод, например, шахтную вентиляционную сеть (Ушаков К.З. Бурчаков А.М. Пучков Л.А. Медведев И. И. Аэрология горных предприятий, М. Недра, 1987). К таким вентиляторным установкам относят вентиляторы, работающие через перемычку. Недостатком известной вентиляторной установки является неполное использование мощности приводного двигателя с целью существенного (в 2 3 раза) увеличения расхода воздуха по сравнению с паспортной производительностью вентиляторной установки, при работе последней не трубопровод. Более близким аналогом к заявленному изобретению является вентиляторная установка, состоящая из вентилятора-эжектора, установленного в горной выработке (Медведев И.И. Проветривание калийных рудников, М. Недра, 1970, с. 124 139), которая позволяет увеличить в несколько раз расход воздуха по сравнению с паспортной производительностью. Недостатком известного технического решения является возможность работы эжектора, расположенного в горной выработке большого сечения в режиме "сам на себя", т.е. с замкнутым движением воздушных потоков в районе вентиляторной установки циркулирующих потоков, а также трудность в подборе выработки нужной конфигурации и в нужном месте для достижения максимального эжектирующего эффекта и в расширении рабочей зоны вентиляторной эжектирующей установки. Цель изобретения расширение рабочей зоны (области промышленного использования) вентиляторной эжектирующей установки. Поставленная цель достигается путем расположения двух одинаковых вентиляторов эжекторов у входных сечений и обечайку встречно друг другу с возможностью перемещения из вентиляторов вдоль оси (ближе-дальше к обечайке) и перекрытия остальной части сечения горной выработки перемычкой. Размеры поперечного сечения обечайки определяют исходя из оптимального отношения площади поперечного сечения в зоне полного перемещения первичного потока, проходящего через вентилятор и вторичного эжектируемого по сечению между вентилятором и обечайкой. За счет этого обеспечивается постоянный расход воздуха с максимальным коэффициентом эжекции (по отношению к паспортной производительности вентилятора). Раскрытие струи первичного потока (до зоны полного перемешивания первичного и вторичного потоков) должно происходить в обечайке, чем предотвращается движение воздушных потоков внутри обечайки навстречу основному потоку. Для снижения эжектирующего эффекта от максимального значения, вентилятор перемещают вдоль оси отодвигая его от обечайки или вдвигая его в обечайку, как показано на чертеже. Это целесообразно выполнять при необходимости снижения количества воздуха, подаваемого эжектирующей установкой превышающей возможности регулирования производительности лопатками направляющего аппарата вентилятора, т.е. происходит расширение рабочей зоны в сторону уменьшения производительностей. Особенно ценным является то, что даже для вентиляторов без средств регулирования производительности (направляющих аппаратов) возможно получение на единственной характеристики, а рабочей зоны, что расширяет возможности применения вентиляторной эжектирующей установки предлагаемого типа. Перемычка между обечайкой и стенками горной выработки предотвратит движение воздушных потоков в этом сечении. В работе находится один из вентиляторов-эжекторов и независимо от величины сечения горной выработки, в которой расположена вентиляторная установка, она будет иметь постоянный расход воздуха. В реверсивном режиме включается второй вентилятор-эжектор, расположенный с другой стороны обечайки, встречно первому. Производительность вентиляторной установки как в прямом, так и в реверсивном режиме будет одинаковой. На чертеже представлена вентиляторная установка, где 1 горная выработка; 2, 3 вентиляторы-эжекторы; 4 - обечайка; 5 перемычка; 6 поток воздуха при прямой работе вентиляторной установки; 7 эжектируемый поток при этом режиме работы установки; 8 поток воздуха при реверсивной работе вентиляторной установки; 9 эжектируемый поток при реверсивном режиме работы установки. Вентиляторная установка работает следующим образом. При включении вентилятора-эжектора 2 через него проходит поток воздуха, 6, а по сечению между внешней поверхностью вентилятора 2 и внутренней поверхностью обечайки 4 проходит поток эжектируемого воздуха 7. Поток 6 и 7 перемещается по длине обечайки и поступают в горную выработку 1. Такая схема позволяет увеличивать в несколько раз расход воздуха по сравнению с паспортной производительностью вентилятора. Между стенками выработки 1 и обечайкой 4 установлена перемычка 5, поэтому в данном сечении движение воздуха не происходит. Обечайка 4 подбирается таким образом, чтобы обеспечивался максимальной эжектирующий эффект воздуха. При необходимости снижения эжектирующего эффекта более возможностей регулирования, вентилятор 2(3) перемещают вдоль оси (ближе дальше к обечайке) показано пунктиром на чертеже. С другой стороны обечайки зеркально вентилятору-эжектору 2 устанавливают вентилятор-эжектор 3, который включается в работу в реверсивном режиме, а вентилятор-эжектор 2 в этом случае останавливается. В реверсивном режиме все происходит как при работе вентилятора эжектора 2. Только в обратную сторону, а именно через вентилятор-эжектор 3 проходит поток воздуха, а по сечению между внешней поверхностью вентилятора-эжектора 3 и внутренней поверхностью обечайки 4 проходит поток эжектируемого воздуха 9. Потоки 8 и 9 перемешиваются по длине обечайки и поступают в горную выработку 1, обеспечивая обратное движение воздуха по системе горных выработок, т.е. реверсию воздушной струи (регулирование аналогично прямой работы). Такая вентиляторная установка может располагаться в любой горной выработке, где возможно размещение обечайки, обеспечивая работу в любой точке расширенной рабочей зоны как в прямом, так и в реверсивном режиме работы. На руднике Первого Березниковского производственного калийного рудоуправления АО "Уралкалий" ведутся опытные работы по испытанию предлагаемой вентиляторной установки.

Формула изобретения

Вентиляторная эжекторная установка, включающая вентилятор, размещенный в эжекторном канале горной выработки, отличающаяся тем, что она снабжена установленной вдоль продольной оси горной выработки обечайкой, размещенной между стенками обечайки и стенками горной выработки перемычкой и дополнительным вентилятором, при этом основной вентилятор установлен на противоположном конце обечайки, оба вентилятора установлены с зазором по отношению к стенкам обечайки выходными каналами навстречу друг другу с возможностью перемещения вдоль продольной оси обечайки.