Ремонт Дизайн Мебель

Уравнение гармонических колебаний материальной точки имеет вид. Гармонические колебания. Если колебание описывать по закону косинуса

«Физика - 11 класс»

Ускорение - вторая производная координаты по времени.

Мгновенная скорость точки - это производная координаты точки по времени.
Ускорение точки - это производная ее скорости по времени, или вторая производная координаты по времени.
Поэтому уравнение движения маятника можно записать так:

где х" - вторая производная координаты по времени.

При свободных колебаниях координата х изменяется со временем так, что вторая производная координаты по времени прямо пропорциональна самой координате и противоположна ей по знаку.


Гармонические колебания

Из математики: вторые производные синуса и косинуса по их аргументу пропорциональны самим функциям, взятым с противоположным знаком, и никакие другие функции таким свойством не обладают.
Поэтому:
Координата тела, совершающего свободные колебания, меняется с течением времени по закону синуса или косинуса.


Периодические изменения физической величины в зависимости от времени, происходящие по закону синуса или косинуса, называются гармоническими колебаниями .


Амплитуда колебаний

Амплитудой гармонических колебаний называется модуль наибольшего смещения тела от положения равновесия.

Амплитуда определяется начальными условиями, а точнее энергией, сообщаемой телу.

График зависимости координаты тела от времени представляет собой косинусоиду.

х = x m cos ω 0 t

Тогда уравнение движения, описывающее свободные колебания маятника:

Период и частота гармонических колебаний.

При колебаниях движения тела периодически повторяются.
Промежуток времени Т, за который система совершает один полный цикл колебаний, называется периодом колебаний .

Частота колебаний - это число колебаний в единицу времени.
Если одно колебание совершается за время Т то число колебаний за секунду

В Международной системе единиц (СИ) единица частоты называется герцем (Гц) в честь немецкого физика Г. Герца.

Число колебаний за 2π с равно:

Величина ω 0 - это циклическая (или круговая) частота колебаний.
Через промежуток времени, равный одному периоду, колебания повторяются.

Частоту свободных колебаний называют собственной частотой колебательной системы.
Часто для краткости циклическую частоту называют просто частотой.


Зависимость частоты и периода свободных колебаний от свойств системы.

1. для пружинного маятника

Собственная частота колебаний пружинного маятника равна:

Она тем больше, чем больше жесткость пружины k, и тем меньше, чем больше масса тела m.
Жесткая пружина сообщает телу большее ускорение, быстрее меняет скорость тела, а чем тело массивнее, тем медленнее оно изменяет скорость под влиянием силы.

Период колебаний равен:

Период колебаний пружинного маятника не зависит от амплитуды колебаний.


2. для нитяного маятника

Собственная частота колебаний математического маятника при малых углах отклонения нити от вертикали зависит от длины маятника и ускорения свободного падения:

Период же этих колебаний равен

Период колебаний нитяного маятника при малых углах отклонения не зависит от амплитуды колебаний.

Период колебаний возрастает с увеличением длины маятника. От массы маятника он не зависит.

Чем меньше g, тем больше период колебаний маятника и, следовательно, тем медленнее идут часы с маятником. Так, часы с маятником в виде груза на стержне отстанут за сутки почти на 3 с, если их поднять из подвала на верхний этаж Московского университета (высота 200 м). И это только за счет уменьшения ускорения свободного падения с высотой.

Гармонические колебания

Графики функций f (x ) = sin(x ) и g (x ) = cos(x ) на декартовой плоскости.

Гармоническое колебание - колебания, при которых физическая (или любая другая) величина изменяется с течением времени по синусоидальному или косинусоидальному закону. Кинематическое уравнение гармонических колебаний имеет вид

,

где х - смещение (отклонение) колеблющейся точки от положения равновесия в момент времени t; А - амплитуда колебаний, это величина, определяющая максимальное отклонение колеблющейся точки от положения равновесия; ω - циклическая частота, величина, показывающая число полных колебаний происходящих в течение 2π секунд - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

Эволюция во времени перемещения, скорости и ускорения при гармоническом движении

  • Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).
  • Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Применение

Гармонические колебания выделяются из всех остальных видов колебаний по следующим причинам:

См. также

Примечания

Литература

  • Физика. Элементарный учебник физики / Под ред. Г. С. Лансберга. - 3 изд. - М ., 1962. - Т. 3.
  • Хайкин С. Э. Физические основы механики. - М ., 1963.
  • А. М. Афонин. Физические основы механики. - Изд. МГТУ им. Баумана, 2006.
  • Горелик Г. С. Колебания и волны. Введение в акустику, радиофизику и оптику. - М .: Физматлит, 1959. - 572 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Гармонические колебания" в других словарях:

    Современная энциклопедия

    Гармонические колебания - ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодические изменения физической величины, происходящие по закону синуса. Графически гармонические колебания изображаются кривой синусоидой. Гармонические колебания простейший вид периодических движений, характеризуется … Иллюстрированный энциклопедический словарь

    Колебания, при которых физическая величина изменяется с течением времени по закону синуса или косинуса. Графически Г. к. изображаются кривой синусоидой или косинусоидой (см. рис.); они могут быть записаны в форме: х = Asin (ωt + φ) или х … Большая советская энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ, периодическое движение, такое как движение МАЯТНИКА, атомные колебания или колебания в электрической цепи. Тело совершает незатухающие гармонические колебания, когда оно колеблется вдоль линии, перемещаясь на одинаковое… … Научно-технический энциклопедический словарь

    Колебания, при к рых физ. (или любая другая) величина изменяется с течением времени по синусоидальному закону: x=Asin(wt+j), где x значение колеблющейся величины в данный. момент времени t (для механич. Г. к., напр., смещение или скорость, для… … Физическая энциклопедия

    гармонические колебания - Механические колебания, при которых обобщенная координата и (или) обобщенная скорость изменяются пропорционально синусу с аргументом, линейно зависящим от времени. [Сборник рекомендуемых терминов. Выпуск 106. Механические колебания. Академия наук … Справочник технического переводчика

    Колебания, при к рых физ. (или любая другая) величина изменяется во времени по синусоидальному закону, где х значение колеблющейся величины в момент времени t (для механич. Г. к., напр., смещение и скорость, для электрич. напряжение и сила тока) … Физическая энциклопедия

    ГАРМОНИЧЕСКИЕ КОЛЕБАНИЯ - (см.), при которых физ. величина изменяется с течением времени по закону синуса или косинуса (напр. изменения (см.) и скорости при колебании (см.) или изменения (см.) и силы тока при электрических Г. к.) … Большая политехническая энциклопедия

    Характеризуются изменением колеблющейся величины x (напр., отклонения маятника от положения равновесия, напряжения в цепи переменного тока и т. д.) во времени t по закону: x = Asin (?t + ?), где А амплитуда гармонических колебаний, ? угловая… … Большой Энциклопедический словарь

    Гармонические колебания - 19. Гармонические колебания Колебания, при которых значения колеблющейся величины изменяются во времени по закону Источник … Словарь-справочник терминов нормативно-технической документации

    Периодич. колебания, при к рых изменение во времени физ. величины происходит по закону синуса или косинуса (см. рис.): s = Аsin(wt+ф0), где s отклонение колеблющейся величины от её ср. (равновесного) значения, А=const амплитуда, w= const круговая … Большой энциклопедический политехнический словарь

Книги

  • Гармонические колебания Вселенной , Берри Б.Л. , В книге описаны стабильные колебания Вселенной от периодов элементарных частиц до времени ее существования в 14 млрд. лет. Ритмы природы подобны звукам струнных инструментов с октавами из… Категория: Научная и техническая литература Издатель:
Выбор начальной фазы позволяет при описании гармонических колебаний перейти от функции синуса к функции косинуса:

Обобщенное гармоническое колебание в дифференциальном виде:

Для того чтобы свободные колебания совершались по гармоническому закону, необходимо, чтобы сила, стремящаяся возвратить тело в положение равновесия, была пропорциональна смещению тела из положения равновесия и направлена в сторону, противоположную смещению:

где – масса колеблющегося тела.

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором, а уравнение гармонических колебаний – уравнением гармонического осциллятора.

1.2. Сложение колебаний

Неpедки случаи, когда система одновpеменно участвует в двух или нескольких независимых дpуг от дpуга колебаниях. В этих случаях обpазуется сложное колебательное движение, котоpое создается путем наложения (сложения) колебаний дpуг на дpуга. Очевидно, случаи сложения колебаний могут быть весьма pазнообpазны. Они зависят не только от числа складываемых колебаний, но и от паpаметpов колебаний, от их частот, фаз, амплитуд, напpавлений. Не пpедставляется возможным обозpеть все возможное pазнообpазие случаев сложения колебаний, поэтому огpаничимся pассмотpением лишь отдельных пpимеpов.

Сложение гармонических колебаний, направленных вдоль одной прямой

Рассмотрим сложение одинаково направленных колебаний одного периода, но отличающихся начальной фазой и амплитудой. Уравнения складываемых колебаний заданы в следующем виде:

где и – смещения; и – амплитуды; и – начальные фазы складываемых колебаний.

Рис.2.

Амплитуду результирующего колебания удобно определить с помощью векторной диаграммы (рис. 2), на которой отложены векторы амплитуд и складываемых колебаний под углами и к оси и по правилу параллелограмма получен вектор амплитуды суммарного колебания .

Если равномерно вращать систему векторов (параллелограмм) и проектировать векторы на ось , то их проекции будут совершать гармонические колебания в соответствии с заданными уравнениями. Взаимное расположение векторов , и при этом остается неизменным, поэтому колебательное движение проекции результирующего вектора тоже будет гармоническим.

Отсюда следует вывод, что суммарное движение - гармоническое колебание, имеющее заданную циклическую частоту. Определим модуль амплитуды А результирующего колебания. В угол (из равенства противоположных углов параллелограмма).

Следовательно,

отсюда: .

Согласно теореме косинусов ,

Начальная фаза результирующего колебания определяется из :

Соотношения для фазы и амплитуды позволяют найти амплитуду и начальную фазу результирующего движения и составить его уравнение: .

Биения

Рассмотрим случай, когда частоты двух складываемых колебаний мало отличаются друг от друга , и пусть амплитуды одинаковы и начальные фазы , т.е.

Сложим эти уравнения аналитически:

Преобразуем

Рис. 3.
Так как, медленно изменяется, величину нельзя назвать амплитудой в полном смысле этого слова (амплитуда величина постоянная). Условно эту величину можно назвать переменной амплитудой. График таких колебаний показан на рис.3. Складываемые колебания имеют одинаковые амплитуды, но различны периоды, при этом периоды и отличаются незначительно друг от друга. При сложении таких колебаний наблюдаются биения. Число биений в секунду определяется разностью частот складываемых колебаний, т.е

Биения можно наблюдать при звучании двух камертонов, если частоты и колебаний близки друг к другу.

Сложение взаимно перпендикулярных колебаний

Пусть материальная точка одновременно участвует в двух гармонических колебаниях, совершающихся с одинаковыми периодами в двух взаимно перпендикулярных направлениях. С этими направлениями можно связать прямоугольную систему координат , расположив начало координат в положении равновесия точки. Обозначим смещение точки С вдоль осей и , соответственно, через и . (рис. 4).

Рассмотрим несколько частных случаев.

1). Начальные фазы колебаний одинаковы

Выберем момент начала отсчета времени таким образом, чтобы начальные фазы обоих колебаний были равны нулю. Тогда смещения вдоль осей и можно выразить уравнениями:

Поделив почленно эти равенства, получим уравнения траектории точки С:
или .

Следовательно, в результате сложения двух взаимно перпендикулярных колебаний точка С колеблется вдоль отрезка прямой, проходящей через начало координат (рис.4).

Рис. 4.
2). Начальная разность фаз равна :

Уравнения колебания в этом случае имеют вид:

Уравнение траектории точки:

Следовательно, точка С колеблется вдоль отрезка прямой, проходящей через начало координат, но лежащей в других квадрантах, чем в первом случае. Амплитуда А результирующих колебаний в обоих рассмотренных случаях равна:

3). Начальная разность фаз равна .

Уравнения колебаний имеют вид:

Разделим первое уравнение на , второе – на :

Возведем оба равенства в квадрат и сложим. Получим следующее уравнение траектории результирующего движения колеблющейся точки:

Колеблющаяся точка С движется по эллипсу с полуосями и . При равных амплитудах траекторией суммарного движения будет окружность . В общем случае при , но кратным, т.е. , при сложении, взаимно перпендикулярных колебаний колеблющаяся точка движется по кривым, называемым фигурами Лиссажу.

Фигуры Лиссажу

Фигу́ры Лиссажу́ – замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два гармонических колебания в двух взаимно перпендикулярных направлениях.

Впервые изучены французским учёным Жюлем Антуаном Лиссажу. Вид фигур зависит от соотношения между периодами (частотами), фазами и амплитудами обоих колебаний (рис. 5).

Рис.5.

В простейшем случае равенства обоих периодов фигуры представляют собой эллипсы, которые при разности фаз или вырождаются в отрезки прямых, а при разности фаз и равенстве амплитуд превращаются в окружность. Если периоды обоих колебаний неточно совпадают, то разность фаз всё время меняется, вследствие чего эллипс всё время деформируется. При существенно различных периодах фигуры Лиссажу не наблюдаются. Однако, если периоды относятся как целые числа, то через промежуток времени, равный наименьшему кратному обоих периодов, движущаяся точка снова возвращается в то же положение – получаются фигуры Лиссажу более сложной формы.
Фигуры Лиссажу вписываются в прямоугольник, центр которого совпадает с началом координат, а стороны параллельны осям координат и расположены по обе стороны от них на расстояниях, равных амплитудам колебаний (рис. 6).

§ 6. МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ Основные формулы

Уравнение гармонических колебаний

где х - смещение колеблющейся точки от положения равновесия; t - время; А, ω, φ- соответственно амплитуда, угловая частота, начальная фаза колебаний; - фаза колебаний в моментt .

Угловая частота колебаний

где ν и Т - частота и период колебаний.

Скорость точки, совершающей гармонические колебания,

Ускорение при гармоническом колебании

Амплитуда А результирующего колебания, полученного при сложении двух колебаний с одинаковыми частотами, происходящих по одной прямой, определяется по формуле

где a 1 и А 2 - амплитуды составляющих колебаний; φ 1 и φ 2 - их начальные фазы.

Начальная фаза φ результирующего колебания может быть найдена из формулы

Частота биений, возникающих при сложении двух колебаний, происходящих по одной прямой с различными, но близкими по зна­чению частотами ν 1 и ν 2 ,

Уравнение траектории точки, участвующей в двух взаимно перпендикулярных колебаниях с амплитудами A 1 и A 2 и начальны­ми фазами φ 1 и φ 2 ,

Если начальные фазы φ 1 и φ 2 составляющих колебаний одинако­вы, то уравнение траектории принимает вид

т. е. точка движется по прямой.

В том случае, если разность фаз , уравнение принимает вид

т. е. точка движется по эллипсу.

Дифференциальное уравнение гармонических колебаний ма­териальной точки

, или ,где m - масса точки; k - коэффициент квазиупругой силы (k =т ω 2).

Полная энергия материальной точки, совершающей гармони­ческие колебания,

Период колебаний тела, подвешенного на пружине (пружин­ный маятник),

где m - масса тела; k - жесткость пружины. Формула справедлива для упругих колебаний в пределах, в ко­торых выполняется закон Гука (при малой массе пружины в срав­нении с массой тела).

Период колебаний математического маятника

где l - длина маятника; g - ускорение свободного падения. Период колебаний физического маятника

где J - момент инерции колеблющегося тела относительно оси

колебаний; а - расстояние центра масс маятника от оси колебаний;

Приведенная длина физического маятника.

Приведенные формулы являются точными для случая бесконеч­но малых амплитуд. При конечных амплитудах эти формулы дают лишь приближенные результаты. При амплитудах не болееошибка в значении периода не превышает 1 %.

Период крутильных колебаний тела, подвешенного на упругой нити,

где J - момент инерции тела относительно оси, совпадающей с упругой нитью; k - жесткость упругой нити, равная отношению упругого момента, возникающего при закручивании нити, к углу, на который нить закручивается.

Дифференциальное уравнение затухающих колебаний , или ,

где r - коэффициент сопротивления; δ - коэффициент затухания: ;ω 0 - собственная угловая частота колебаний *

Уравнение затухающих колебаний

где A (t) - амплитуда затухающих колебаний в момент t; ω - их угловая частота.

Угловая частота затухающих колебаний

О Зависимость амплитуды затухающих колебаний от времени

I

где А 0 - амплитуда колебаний в момент t =0.

Логарифмический декремент колебаний

где A (t) и A (t+T) - амплитуды двух последовательных колеба­ний, отстоящих по времени друг от друга на период.

Дифференциальное уравнение вынужденных колебаний

где - внешняя периодическая сила, действующая наколеблющуюся материальную точку и вызывающая вынужденные колебания; F 0 - ее амплитудное значение;

Амплитуда вынужденных колебаний

Резонансная частота и резонансная амплитуда и

Примеры решения задач

Пример 1. Точка совершает колебания по закону x(t)= , где А=2 см. Определить начальную фазу φ, если

x (0)=см их , (0)<0. Построить векторную диаграмму для мо-­ мента t =0.

Решение. Воспользуемся уравнением движения и выразим смещение в момент t =0 через начальную фазу:

Отсюда найдем начальную фазу:

* В приведенных ранее формулах гармонических колебаний та же величина обозначалась просто ω (без индекса 0).

Подставим в это выражение заданные значения x (0) и А: φ= =. Значению аргументаудовлетворяютдва значения угла:

Для того чтобы решить, какое из этих значений угла φ удовлет-­ воряет еще и условию , найдем сначала:

Подставив в это выражение значение t =0 и поочередно значения начальных фаз и, найдем

Так как всегдаA >0 и ω>0, то условиюудовлетворяет толь­ко первое значение начальной фазы. Таким образом, искомая начальная фаза

По найденному значению φ постро-­ им векторную диаграмму (рис. 6.1). Пример 2. Материальная точка массой т =5 г совершает гармоничес-­ кие колебания с частотой ν =0,5 Гц. Амплитуда колебаний A =3 см. Оп-­ ределить: 1) скорость υ точки в мо-­ мент времени, когда смещение х= = 1,5 см; 2) максимальную силу F max , действующую на точку; 3) Рис. 6.1 полную энергию Е колеблющейся точ­ ки.

а формулу скорости получим, взяв первую производную по времени от смещения:

Чтобы выразить скорость через смещение, надо исключить из формул (1) и (2) время. Для этого возведем оба уравнения в квад­рат, разделим первое на А 2 , второе на A 2 ω 2 и сложим:

, или

Решив последнее уравнение относительно υ, найдем

Выполнив вычисления по этой формуле, получим

Знак плюс соответствует случаю, когда направление скорости совпадает с положительным направлением оси х, знак минус - ког­да направление скорости совпадает с отрицательным направлением оси х.

Смещение при гармоническом колебании кроме уравнения (1) может быть определено также уравнением

Повторив с этим уравнением такое же решение, получим тот же ответ.

2. Силу действующую на точку, найдем по второму закону Нью­тона:

где а - ускорение точки, которое получим, взяв производную по времени от скорости:

Подставив выражение ускорения в формулу (3), получим

Отсюда максимальное значение силы

Подставив в это уравнение значения величин π, ν, т и A, найдем

3. Полная энергия колеблющейся точки есть сумма кинетической и потенциальной энергий, вычисленных для любого момента вре­мени.

Проще всего вычислить полную энергию в момент, когда кинети­ческая энергия достигает максимального значения. В этот момент потенциальная энергия равна нулю. Поэтому полная энергия E колеблющейся точки равна максимальной кинетической энергии

Максимальную скорость определим из формулы (2), положив : . Подставив выражение скорости в фор­-мулу (4), найдем

Подставив значения величин в эту формулу и произведя вычис­ления, получим

или мкДж.

Пример 3. На концах тонкого стержня длиной l = 1 м и массой m 3 =400 г укреплены шарики малых размеров массами m 1 =200 г и m 2 =300г. Стержень колеблется около горизонтальной оси, перпен-

дикулярной стержню и проходящей через его середину (точка О на рис. 6.2). Определить период Т колебаний, совершаемых стержнем.

Решение. Период колебаний физического маятника, каким является стержень с шариками, определяется соотношением

гдеJ - т - его масса; l С - расстояние от центра масс ма­ятника до оси.

Момент инерции данного маятника равен сумме моментов инерции шариков J 1 и J 2 и стержня J 3:

Принимая шарики за материальные точки, вы­разим моменты их инерции:

Так как ось проходит через середину стержня, то его момент инерции относительно этой оси J 3 = =. Подставив полученные выражения J 1 , J 2 и J 3 в формулу (2), найдем общий момент инерции фи-­ зического маятника:

Произведя вычисления по этой формуле, найдем

Рис. 6.2 Масса маятника состоит из масс шариков и массы стержня:

Расстояние l С центра масс маятника от оси колебаний найдем, исходя из следующих соображений. Если ось х направить вдоль стержня и начало координат совместить с точкой О, то искомое рас­стояние l равно координате центра масс маятника, т. е.

Подставив значения величин m 1 , m 2 , m , l и произведя вычисле­ния, найдем

Произведя расчеты по формуле (1), получим период колебаний физического маятника:

Пример 4. Физический маятник представляет собой стержень длиной l = 1 м и массой 3т 1 с прикрепленным к одному из его концов обручем диаметром и массойт 1 . Горизонтальная ось Oz

маятника проходит через середину стержня перпендикулярно ему (рис. 6.3). Определить период Т колебаний такого маятника.

Решение. Период колебаний физического маятника опреде­ляется по формуле

(1)

где J - момент инерции маятника относительно оси колебаний; т - его масса; l C - расстояние от центра масс маятника до оси колебаний.

Момент инерции маятника равен сумме мо­ментов инерции стержня J 1 и обруча J 2:

(2).

Момент инерции стержня относительно оси, перпендикулярной стержню и проходящей через его центр масс, определяется по форму-­ ле . В данном случает= 3т 1 и

Момент инерции обруча найдем, восполь-­ зовавшись теоремой Штейнера ,где J - момент инерции относительно про-­ извольной оси; J 0 - момент инерции отно-­ сительно оси, проходящей через центр масс параллельно заданной оси; а - расстояние между указанными осями. Применив эту фор-­ мулу к обручу, получим

Подставив выражения J 1 и J 2 в форму­лу (2), найдем момент инерции маятника относительно оси вра­щения:

Расстояние l С от оси маятника до его центра масс равно

Подставив в формулу (1) выражения J , l с и массы маятника , найдем период его колебаний:

После вычисления по этой формуле получим T =2,17 с.

Пример 5. Складываются два колебания одинакового направле-­ ния, выражаемых уравнениями ;х 2 = =, гдеА 1 = 1 см, A 2 =2 см, с,с,ω = =. 1. Определить начальные фазыφ 1 и φ 2 составляющих коле-

баний. 2. Найти амплитуду А и начальную фазу φ результирующего колебания. Написать уравнение результирующего колебания.

Решение. 1. Уравнение гармонического колебания имеет вид

Преобразуем уравнения, заданные в условии задачи, к такому же виду:

Из сравнения выражений (2) с равенством (1) находим начальные фазы первого и второго колебаний:

Рад и рад.

2. Для определения амплитуды А результирую­щего колебания удобно воспользоваться векторной диаграммой, представленной на рис. 6.4. Согласно теореме косинусов, получим

где - разность фаз составляющих колебаний.Так как , то, подставляя найденныезначения φ 2 и φ 1 получим рад.

Подставим значения А 1 , А 2 и в формулу(3) и произведем вычисления:

A = 2,65 см.

Тангенс начальной фазы φ результирующего колебания опреде-­ лим непосредственно из рис. 6.4: ,отку-­ да начальная фаза

Гармоническое колебание - явление периодического изменения какой-либо величины, при котором зависимость от аргумента имеет характер функции синуса или косинуса. Например, гармонически колеблется величина, изменяющаяся во времени следующим образом:

где х - значение изменяющейся величины, t - время, остальные параметры - постоянные: А - амплитуда колебаний, ω - циклическая частота колебаний, - полная фаза колебаний, - начальная фаза колебаний.

Обобщенное гармоническое колебание в дифференциальном виде

(Любое нетривиальное решение этого дифференциального уравнения - есть гармоническое колебание с циклической частотой )

Виды колебаний

    Свободные колебания совершаются под действием внутренних сил системы после того, как система была выведена из положения равновесия. Чтобы свободные колебания были гармоническими, необходимо, чтобы колебательная система была линейной (описывалась линейными уравнениями движения), и в ней отсутствовала диссипация энергии (последняя вызвала бы затухание).

    Вынужденные колебания совершаются под воздействием внешней периодической силы. Чтобы они были гармоническими, достаточно чтобы колебательная система была линейной (описывалась линейными уравнениями движения), а внешняя сила сама менялась со временем как гармоническое колебание (то есть чтобы зависимость от времени этой силы была синусоидальной).

Уравнение гармонических колебаний

Уравнение (1)

дает зависимость колеблющейся величины S от времени t; это и есть уравнение свободных гармонических колебаний в явном виде. Однако обычно под уравнением колебаний понимают иную запись этого уравнения, в дифференциальной форме. Возьмем для определенности уравнение (1) в виде

дважды продифференцируем его по времени:

Видно, что выполняется следующее соотношение:

которое и называется уравнением свободных гармонических колебаний (в дифференциальной форме). Уравнение (1) является решением дифференциального уравнения (2). Поскольку уравнение (2) - дифференциальное уравнение второго порядка, необходимы два начальных условия для получения полного решения (то есть определения входящих в уравнение (1) констант A и  ); например, положение и скорость колебательной системы при t = 0.

Математи́ческий ма́ятник - осциллятор, представляющий собой механическую систему, состоящую изматериальной точки, находящейся на невесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения. Период малых собственных колебаний математического маятника длины l неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен

и не зависит от амплитуды и массы маятника.

Физический маятник - осциллятор, представляющий собой твёрдое тело, совершающее колебания в поле каких-либо сил относительно точки, не являющейся центром масс этого тела, или неподвижной оси, перпендикулярной направлению действия сил и не проходящей через центр масс этого тела.