Ремонт Дизайн Мебель

Закон радиоактивного распада. Постоянная распада, среднее время жизни ядра, период полураспада, активность. Постоянная распада. Период полураспада. Активность. Виды радиоактивного распада и их спектры Постоянная радиоактивного распада в чем измеряется

Лекция 16

Элементы физики атомного ядра

Вопросы

1. Закон радиоактивного распада.

    Ядерные реакции и их основные типы.

    Закономерности  ,  и  распадов.

    Дозы излучений.

    Цепная реакция деления.

6. Реакции синтеза (термоядерные реакции).

1. Закон радиоактивного распада

Под радиоактивным распадом понимают естественное радиоактивное превращение ядер, происходящее самопроизвольно.

Атомное ядро, испытывающее распад, называется материнским , возникающее ядро – дочерним .

Теория радиоактивного распада подчиняется законам статистики. Число ядер dN, распавшихся за интервал времени от t до t+ dt, пропорционально промежутку времени dt и числу N нераспавшихся ядер к моме­нту времени t :

dN = – λN dt , (1)

λ  постоянная радиоактивного распада, с  1 ; знак минус указывает, что общее число радиоак­тивных ядер в процессе распада уменьшается.


(2)

где N 0  начальное число нераспавшихся ядер в момент времени t = 0; N  число нераспавшихся ядер в момент времени t.

Закон радиоактив­ного распада : число нераспавшихся ядер убывает со временем по экспоненциальному закону.

Интенсивность процесса распада характеризуют две величины:

    период полураспада T 1/2  время, за которое исходное число радиоактивных ядер уменьшается вдвое;

    среднее время жизни τ радиоактивного ядра .







. (3)

Периоды полураспада, Т 1 /2

4,510 9 лет

Суммарная продолжительность жизни dN ядер равна t |dN | = λNt dt. Проинтег­рировав это выражение по t (т.е. от 0 до ∞) и разделим на началь­ное число ядер N 0 , получимсреднее время жизни τ радиоактивного ядра:

. (4)

Табличный интеграл:

Таким образом, среднее время жизни τ радиоактивного ядра есть величина, обратная постоянной радиоактивного распада λ.

Активностью А нуклида в радиоактивном источнике называется число распадов, происходящих с ядрами вещества в 1 с:

Бк  беккерель, (5)

1Бк  активность нуклида, при которой за 1 с происходит один акт распада.

Внесистемная единица – кюри [Ки]: 1[Ки] = 3,710 10 [Бк].

Радиоактивный распад происходит в соответствии с так называемымиправилами смещения (являются следствием законов сохранения заряда и массового числа), позволяющими установить, какое ядро возникает в результате распада данного материнского ядра.

Правило смещения для αраспада:
. (6)

Правило смещения для βраспада:
, (7)

где
 материнское ядро; Y  символ дочернего ядра;
 ядро гелия (αчастица);  символическое обозначение электрона (заряд его равен е , а массовое число – нулю).

Возникающие в результате радиоактивного распада ядра могут быть, в свою очередь, радиоактивными. Это приводит к возникновениюцепочки или ряда радиоак­тивных превращений, заканчивающихся стабильным элементом. Конечными нуклидами являются:
,
,
,
.

  1. Ядерные реакции и их основные типы

Ядерная реакция это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ– квантов .

, , (8)

X , Y  исходное и конечное ядра; С  промежуточное компаунд-ядро; а , b  бомбардирующая и испускаемая частицы.

Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году

(9)

При ядерных реакциях выполняется несколько законов сохранения : импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам сохранения при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т. е. числа нуклонов – протонов и нейтронов).

Классификация ядерных реакций

    по роду участвующих частиц :

    под действием нейтронов;

    под действием заряженных частиц (протонов, частиц и др.);

    под действием квантов.

2. по энергии вызывающих их частиц :

    малые энергии  1 эВ (с нейтронами);

    средние энергии  1 МэВ (с квантами, частицами);

    высокие энергии  10 3 МэВ (рождение новых элементарных частиц);

3. По роду участвующих в них ядер:

    на легких ядрах (А<50);

    на средних ядрах (50<А<100);

    на тяжелых ядрах (А>100);

4. по характеру ядерных превращений :

    с испусканием нейтронов;

    с испусканием заряженных частиц;

    реакции захвата (излучается квант).

3. Закономерности ,  и распадов

распад:  активными являются ядра главным образом тяжелых элементов (А > 200, Z > 82), например:

(10)

 частица образуется при встрече двух протонов и двух нейтронов, имеет скорость 1,410 7 …210 7 м/c, что соответствует энергиям 4,0…8,8 МэВ.

Закон Гейгера-Нэттола:
, (11)

R   пробег, расстояние проходимое частицей в веществе до полной остановки;
.Чем меньше период полураспада радиоактивного элемента, тем больше пробег, а следовательно и энергия  частицы .

 частица с энергией 4,2 МэВ окружена потенциальным барьером кулоновских сил 8,8 МэВ. Ее вылет объясняется в квантовой механике туннельным эффектом.

 распад:  электрон рождается в результате процессов, происходящих внутри ядра. Т.к. число нуклонов не меняется, а Z увеличивается на 1, то один из нейтронов превращается в протон с образованием электрона и вылета антинейтрино :

(12)

Теория  распада с испусканием нейтрино предложена Паули в 1931 г. и экспериментально подтверждена в 1956 г. Обладает высокой проникающей способностью: нейтрино с энергией 1 МэВ в свинце пробегает путь 10 18 м!

распад: не является самостоятельным, а сопровождает  и  распады.  спектр дискретен, для него характерны не волновые, а корпускулярные свойства.  кванты, обладая нулевой массой покоя, не обладая зарядом, не могут замедляться в среде, а могут либо поглощаться , либо рассеиваться . Большая проникающая способность  излучения используется в  дефектоскопии.

Радиоактивность. Основной закон радиоактивного распада.

Радиоактивность - самопроизвольный распад неустойчивых ядер с испусканием других ядер и элементарных частиц.

Виды радиоактивности:

1. Естественная

2. Искусственная.

Эрнест Резерфорд – строение атома .

Виды радиоактивного распада:

α-распад: à + ; β-распад: à +

Основной закон радиоактивного распада. N= N o e -лt

Число нераспавшихся радиоактивных ядер убывает по экспонициальному закону. Л(лямбда)-постоянная распада.

Постоянная распада. Период полураспада. Активность. Виды радиоактивного распада и их спектры.

Л(лямбда)-постоянная распада, пропорциональная вероятности распада радиоактивного ядра и различная для разных радиоактивных веществ.

Период полураспада ( T)- это время, в течение которого распадается половина радиоактивных ядер. T=ln2/л=0,69/л.

Активность характеризуется скоростью распада. A=-dN/dT=лN=лN o e -лt =(N/T)*ln2

[A]-беккерель (Бк)= 1распад/секунду.

[А]-кюри (Ки) . 1 Ки=3,7*10 10 Бк=3,7*10 10 с -1

[А]-резерфорд(Рд). 1Рд=10 6

Виды радиоактивного распада. Правило смещения.

Альфа-распад(самое слабое): А Z X> 4 2 He + A-4 Z-2 Y

Бета-распад: A Z X> 0 -1 e + A Z+1 Y

Энергетические спектры частиц многих радиоактивных элементов состоят из нескольких линий. Причина появления такой структуры спектра - распад начального ядра (А,Z) на возбужденное состояние ядра(А-4,Z-2. Для альфа - распада, например). Измеряя спектры частиц можно получить информацию о природе возбужденных состояний ядра.

Характеристики взаимодействия заряженных частиц с веществом: линейная плотность ионизации, линейная тормозная способность, средний линейный пробег. Проникающая и ионизирующая способности альфа, бета и гамма излучения.

Заряженные частицы, распространяясь в веществе, взаимодействуют с электронами и ядрами, в результате чего изменяется состояние как вещества, так и частиц.

Линейная плотность ионизации - это отношение ионов знака dn, образованных заряженных ионизированной частицей на элементарном пути dL, к длине этого пути. I=dn/dL.

Линейная тормозная способность- это отношение энергии dE, теряемой заряженной ионизирующей частицей при прохождении элементарного пути dL, к длине этого пути. S= dE/dL.

Средний линейный пробег- это расстояние, которое ионизирующая частица проходит в веществе без столкновения. R-средний линейный пробег.

Необходимо учитывать проникающую способность излучений. Например, тяжелые ядра атомов и альфа-частицы имеют крайне малую длину пробега в веществе, поэтому радиоактивные альфа - источники опасны при попадании внутрь организма. Наоборот, гамма-излучение обладает значительной проникающей способностью, поскольку состоят из высокоэнергетических фотонов, не обладающих зарядом.


Проникающая способность всех видов ионизирующего излучения зависит от энергии.

1. Радиоактивность. Основной закон радиоактивного распада. Активность.

2. Основные виды радиоактивного распада.

3. Количественные характеристики взаимодействия ионизирующего излучения с веществом.

4. Естественная и искусственная радиоактивность. Радиоактивные ряды.

5. Использование радионуклидов в медицине.

6. Ускорители заряженных частиц и их использование в медицине.

7. Биофизические основы действия ионизирующего излучения.

8. Основные понятия и формулы.

9. Задачи.

Интерес медиков к естественной и искусственной радиоактивности обусловлен следующим.

Во-первых, все живое постоянно подвергается действию естественного радиационного фона, который составляют космическая радиация, излучение радиоактивных элементов, залегающих в поверхностных слоях земной коры, и излучение элементов, попадающих в организм животных вместе с воздухом и пищей.

Во-вторых, радиоактивное излучение применяется в самой медицине в диагностических и терапевтических целях.

33.1. Радиоактивность. Основной закон радиоактивного распада. Активность

Явление радиоактивности было открыто в 1896 г. А. Беккерелем, который наблюдал спонтанное испускание солями урана неизвестного излучения. Вскоре Э. Резерфорд и супруги Кюри установили, что при радиоактивном распаде испускаются ядра Не (α-частицы), электроны (β-частицы) и жесткое электромагнитное излучение (γ-лучи).

В 1934 г. был открыт распад с вылетом позитронов (β + -распад), а в 1940 г. был открыт новый тип радиоактивности - спонтанное деление ядер: делящееся ядро разваливается на два осколка сравнимой массы с одновременным испусканием нейтронов и γ -квантов. Протонная радиоактивность ядер наблюдалась в 1982 г.

Радиоактивность - способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием частиц.

Атомные ядра состоят из протонов и нейтронов, которые имеют обобщающее название - нуклоны. Количество протонов в ядре определяет химические свойства атома и обозначается Z (это порядковый номер химического элемента). Количество нуклонов в ядре называют массовым числом и обозначают А. Ядра с одинаковым порядковым номером и различными массовыми числами называются изотопами. Все изотопы одного химического элемента имеют одинаковые химические свойства. Физические свойства изотопов могут различаться весьма сильно. Для обозначения изотопов используют символ химического элемента с двумя индексами: A Z Х. Нижний индекс - порядковый номер, верхний - массовое число. Часто нижний индекс опускают, так как на него указывает сам символ элемента. Например, пишут 14 С вместо 14 6 С.

Способность ядра к распаду зависит от его состава. У одного и того же элемента могут быть и стабильный, и радиоактивный изотопы. Например, изотоп углерода 12 С стабилен, а изотоп 14 С радиоактивен.

Радиоактивный распад - явление статистическое. Способность изотопа к распаду характеризует постоянная распада λ.

Постоянная распада - вероятность того, что ядро данного изотопа распадется за единицу времени.

Вероятность распада ядра за малое время dt находится по формуле

Учитывая формулу (33.1), получим выражение, определяющее количество распавшихся ядер:

Формула (33.3) называется основным законом радиоактивного распада.

Число радиоактивных ядер убывает со временем по экспоненциальному закону.

На практике вместо постоянной распада λ часто используют другую величину, называемую периодом полураспада.

Период полураспада (Т) - время, в течение которого распадается половина радиоактивных ядер.

Закон радиоактивного распада с использованием периода полураспада записывается так:

График зависимости (33.4) показан на рис. 33.1.

Период полураспада может быть как очень большим, так и очень маленьким (от долей секунды до многих миллиардов лет). В табл. 33.1 представлены периоды полураспада для некоторых элементов.

Рис. 33.1. Убывание количества ядер исходного вещества при радиоактивном распаде

Таблица 33.1. Периоды полураспада для некоторых элементов

Для оценки степени радиоактивности изотопа используют специальную величину, называемую активностью.

Активность - число ядер радиоактивного препарата, распадающихся за единицу времени:

Единица измерения активности в СИ - беккерель (Бк), 1 Бк соответствует одному акту распада в секунду. На практике более упот-

ребительна внесистемная единица активности - кюри (Ки), равная активности 1 г 226 Ra: 1 Ки = 3,7х10 10 Бк.

С течением времени активность убывает так же, как убывает количество нераспавшихся ядер:

33.2. Основные виды радиоактивного распада

В процессе изучения явления радиоактивности были обнаружены 3 вида лучей, испускаемых радиоактивными ядрами, которые получили названия α-, β- и γ-лучей. Позже было установлено, что α- и β-частицы - продукты двух различных видов радиоактивного распада, а γ-лучи являются побочным продуктом этих процессов. Кроме того, γ-лучи сопровождают и более сложные ядерные превращения, которые здесь не рассматриваются.

Альфа-распад состоит в самопроизвольном превращении ядер с испусканием α-частиц (ядра гелия).

Схема α-распада записывается в виде

где Х, Y - символы материнского и дочернего ядер соответственно. При записи α-распада вместо «α« можно писать «Не».

При этом распаде порядковый номер Z элемента уменьшается на 2, а массовое число А - на 4.

При α-распаде дочернее ядро, как правило, образуется в возбужденном состоянии и при переходе в основное состояние испускает γ-квант. Общее свойство сложных микрообъектов заключается в том, что они обладают дискретным набором энергетических состояний. Это относится и к ядрам. Поэтому γ-излучение возбужденных ядер обладает дискретным спектром. Следовательно, и энергетический спектр α-частиц является дискретным.

Энергия испускаемых α-частиц практически для всех α-активных изотопов лежит в пределах 4-9 МэВ.

Бета-распад состоит в самопроизвольном превращении ядер с испусканием электронов (или позитронов).

Установлено, что β-распад всегда сопровождается испусканием нейтральной частицы - нейтрино (или антинейтрино). Эта частица практически не взаимодействует с веществом, и в дальнейшем рассматриваться не будет. Энергия, выделяющаяся при β-распаде, распределяется между β-частицей и нейтрино случайным образом. Поэтому энергетический спектр β-излучения сплошной (рис. 33.2).

Рис. 33.2. Энергетический спектр β-распада

Существует два вида β-распада.

1. Электронный β - -распад заключается в превращении одного ядерного нейтрона в протон и электрон. При этом появляется еще одна частица ν" - антинейтрино:

Электрон и антинейтрино вылетают из ядра. Схема электронного β - -распада записывается в виде

При электронном β-распаде порядковый номер Z-элемента увеличивается на 1, массовое число А не изменяется.

Энергия β-частиц лежит в диапазоне 0,002-2,3 МэВ.

2. Позитронный β + -распад заключается в превращении одного ядерного протона в нейтрон и позитрон. При этом появляется еще одна частица ν - нейтрино:

Сам электронный захват не порождает ионизирующих частиц, но он сопровождается рентгеновским излучением. Это излучение возникает, когда место, освободившееся при поглощении внутреннего электрона, заполняется электроном с внешней орбиты.

Гамма-излучение имеет электромагнитную природу и представляет собой фотоны с длиной волны λ ≤ 10 -10 м.

Гамма-излучение не является самостоятельным видом радиоактивного распада. Излучение этого типа почти всегда сопровождает не только α-распад и β-распад, но и более сложные ядерные реакции. Оно не отклоняется электрическим и магнитным полями, обладает относительно слабой ионизирующей и очень большой проникающей способностями.

33.3. Количественные характеристики взаимодействия ионизирующего излучения с веществом

Воздействие радиоактивного излучения на живые организмы связано с ионизацией, которую оно вызывает в тканях. Способность частицы к ионизации зависит как от ее вида, так и от ее энергии. По мере продвижения частицы в глубь вещества она теряет свою энергию. Этот процесс называют ионизационным торможением.

Для количественной характеристики взаимодействия заряженной частицы с веществом используется несколько величин:

После того как энергия частицы станет ниже энергии ионизации, ее ионизирующее действие прекращается.

Средний линейный пробег (R) заряженной ионизирующей частицы - путь, пройденный ею в веществе до потери ионизирующей способности.

Рассмотрим некоторые характерные особенности взаимодействия различных видов излучения с веществом.

Альфа-излучение

Альфа-частица практически не отклоняется от первоначального направления своего движения, так как ее масса во много раз больше

Рис. 33.3. Зависимость линейной плотности ионизации от пути, пройденного α-частицей в среде

массы электрона, с которым она взаимодействует. По мере ее проникновения в глубь вещества плотность ионизации сначала возрастает, а при завершении пробега (х = R) резко спадает до нуля (рис. 33.3). Это объясняется тем, что при уменьшении скорости движения возрастает время, которое она проводит вблизи молекулы (атома) среды. Вероятность ионизации при этом увеличивается. После того как энергия α-частицы станет сравнимой с энергией молекулярно-теплового движения, она захватывает два электрона в веществе и превращается в атом гелия.

Электроны, образовавшиеся в процессе ионизации, как правило, уходят в сторону от трека α-частицы и вызывают вторичную ионизацию.

Характеристики взаимодействия α-частиц с водой и мягкими тканями представлены в табл. 33.2.

Таблица 33.2. Зависимость характеристик взаимодействия с веществом от энергии α-частиц

Бета-излучение

Для движения β -частицы в веществе характерна криволинейная непредсказуемая траектория. Это связано с равенством масс взаимодействующих частиц.

Характеристики взаимодействия β -частиц с водой и мягкими тканями представлены в табл. 33.3.

Таблица 33.3. Зависимость характеристик взаимодействия с веществом от энергии β-частиц

Как и у α-частиц, ионизационная способность β-частиц растет при уменьшении энергии.

Гамма-излучение

Поглощение γ -излучения веществом подчиняется экспоненциальному закону, аналогичному закону поглощения рентгеновского излучения:

Основными процессами, отвечающими за поглощение γ -излучения, являются фотоэффект и комптоновское рассеяние. При этом образуется относительно небольшое количество свободных электронов (первичная ионизация), которые обладают очень высокой энергией. Они-то и вызывают процессы вторичной ионизации, которая несравненно выше первичной.

33.4. Естественная и искусственная

радиоактивность. Радиоактивные ряды

Термины естественная и искусственная радиоактивность являются условными.

Естественной называют радиоактивность изотопов, существующих в природе, или радиоактивность изотопов, образующихся в результате природных процессов.

Например, естественной является радиоактивность урана. Естественной является и радиоактивность углерода 14 С, который образуется в верхних слоях атмосферы под действием солнечного излучения.

Искусственной называют радиоактивность изотопов, которые возникают в результате деятельности человека.

Таковой является радиоактивность всех изотопов, получаемых на ускорителях частиц. Сюда же можно отнести и радиоактивность почвы, воды и воздуха, возникающую при атомном взрыве.

Естественная радиоактивность

В начальный период изучения радиоактивности исследователи могли использовать лишь естественные радионуклиды (радиоактивные изотопы), содержащиеся в земных породах в достаточно большом количестве: 232 Th, 235 U, 238 U. С этих радионуклидов начинаются три радиоактивных ряда, заканчивающиеся стабильными изотопами РЬ. В дальнейшем был обнаружен ряд, начинающийся с 237 Np, с конечным стабильным ядром 209 Bi. На рис. 33.4 показан ряд, начинающийся с 238 U.

Рис. 33.4. Уран-радиевый ряд

Элементы этого ряда являются основным источником внутреннего облучения человека. Например, 210 Pb и 210 Po поступают в организм вместе с пищей - они концентрируются в рыбе и моллюсках. Оба этих изотопа накапливаются в лишайниках и поэтому присутствуют в мясе северного оленя. Наиболее весомым из всех естественных источников радиации является 222 Rn - тяжелый инертный газ, получающийся при распаде 226 Ra. На него приходится около половины дозы естественной радиации, получаемой человеком. Образуясь в земной коре, этот газ просачивается в атмосферу и попадает в воду (он хорошо растворим).

В земной коре постоянно присутствует радиоактивный изотоп калия 40 К, который входит в состав природного калия (0,0119 %). Из почвы этот элемент поступает через корневую систему растений и с растительной пищей (зерновые, свежие овощи и фрукты, грибы) - в организм.

Еще одним источником естественной радиации является космическое излучение (15 %). Его интенсивность возрастает в горных районах вследствие уменьшения защитного действия атмосферы. Источники природного радиационного фона указаны в табл. 33.4.

Таблица 33.4. Составляющая природного радиоактивного фона

33.5. Использование радионуклидов в медицине

Радионуклидами называют радиоактивные изотопы химических элементов с малым периодом полураспада. В природе такие изотопы отсутствуют, поэтому их получают искусственно. В современной медицине радионуклиды широко используются в диагностических и терапевтических целях.

Диагностическое применение основано на избирательном накоплении некоторых химических элементов отдельными органами. Йод, например, концентрируется в щитовидной железе, а кальций - в костях.

Введение в организм радиоизотопов этих элементов позволяет обнаруживать области их концентрации по радиоактивному излучению и получать таким образом важную диагностическую информацию. Такой метод диагностики называется методом меченых атомов.

Терапевтическое использование радионуклидов основано на разрушающем действии ионизирующего излучения на клетки опухолей.

1. Гамма-терапия - использование γ-излучения высокой энергии (источник 60 Со) для разрушения глубоко расположенных опухолей. Чтобы поверхностно расположенные ткани и органы не подвергались губительному действию, воздействие ионизирующего излучения осуществляется в разные сеансы по разным направлениям.

2. Альфа-терапия - лечебное использование α-частиц. Эти частицы обладают значительной линейной плотностью ионизации и поглощаются даже небольшим слоем воздуха. Поэтому терапевтическое

применение альфа-лучей возможно при непосредственном контакте с поверхностью органа или при введении внутрь (с помощью иглы). Для поверхностного воздействия применяется радоновая терапия (222 Rn): воздействие на кожу (ванны), органы пищеварения (питье), органы дыхания (ингаляции).

В некоторых случаях лечебное применение α -частиц связано с использованием потока нейтронов. При этом методе в ткань (опухоль) предварительно вводят элементы, ядра которых под действием нейтронов испускают α -частицы. После этого больной орган облучают потоком нейтронов. Таким способом α -частицы образуются непосредственно внутри органа, на который они должны оказать разрушительное воздействие.

В таблице 33.5 указаны характеристики некоторых радионуклидов, используемых в медицине.

Таблица 33.5. Характеристика изотопов

33.6. Ускорители заряженных частиц и их использование в медицине

Ускоритель - установка, в которой под действием электрических и магнитных полей получаются направленные пучки заряженных частиц с высокой энергией (от сотен кэВ до сотен ГэВ).

Ускорители создают узкие пучки частиц с заданной энергией и малым поперечным сечением. Это позволяет оказывать направленное воздействие на облучаемые объекты.

Использование ускорителей в медицине

Ускорители электронов и протонов применяются в медицине для лучевой терапии и диагностики. При этом используются как сами ускоренные частицы, так и сопутствующее рентгеновское излучение.

Тормозное рентгеновское излучение получают, направляя пучок частиц на специальную мишень, которая и является источником рентгеновских лучей. От рентгеновской трубки это излучение отличается значительно большей энергией квантов.

Синхротронное рентгеновское излучение возникает в процессе ускорения электронов на кольцевых ускорителях - синхротронах. Такое излучение обладает высокой степенью направленности.

Прямое действие быстрых частиц связано с их высокой проникающей способностью. Такие частицы проходят поверхностные ткани, не вызывая серьезных повреждений, и оказывают ионизирующее действие в конце своего пути. Подбором соответствующей энергии частиц можно добиться разрушения опухолей на заданной глубине.

Области применения ускорителей в медицине показаны в табл. 33.6.

Таблица 33.6. Применение ускорителей в терапии и диагностике

33.7. Биофизические основы действия ионизирующего излучения

Как уже отмечалось выше, воздействие радиоактивного излучения на биологические системы связано с ионизацией молекул. Процесс взаимодействия излучения с клетками можно разделить на три последовательных этапа (стадии).

1. Физическая стадия состоит в передаче энергии излучения молекулам биологической системы, в результате чего происходит их ионизация и возбуждение. Длительность этой стадии 10 -16 -10 -13 с.

2. Физико-химическая стадия состоит из различного рода реакций, приводящих к перераспределению избыточной энергии возбужденных молекул и ионов. В результате появляются высокоактивные

продукты: радикалы и новые ионы с широким спектром химических свойств.

Длительность этой стадии 10 -13 -10 -10 с.

3. Химическая стадия - это взаимодействие радикалов и ионов между собой и с окружающими молекулами. На этой стадии формируются структурные повреждения различного типа, приводящие к изменению биологических свойств: нарушаются структура и функции мембран; возникают поражения в молекулах ДНК и РНК.

Длительность химической стадии 10 -6 -10 -3 с.

4. Биологическая стадия. На этой стадии повреждения молекул и субклеточных структур приводят к разнообразным функциональным нарушениям, к преждевременной гибели клетки в результате действия механизмов апоптоза или вследствие некроза. Повреждения, полученные на биологической стадии, могут передаваться по наследству.

Продолжительность биологической стадии от нескольких минут до десятков лет.

Отметим общие закономерности биологической стадии:

Большие нарушения при малой поглощенной энергии (смертельная для человека доза облучения вызывает нагрев тела всего на 0,001°С);

Действие на последующие поколения через наследственный аппарат клетки;

Характерен скрытый, латентный период;

Разные части клеток обладают различной чувствительностью к излучению;

Прежде всего поражаются делящиеся клетки, что особенно опасно для детского организма;

Губительное действие на ткани взрослого организма, в которых есть деление;

Сходство лучевых изменений с процессами патологии раннего старения.

33.8. Основные понятия и формулы

Продолжение таблицы

33.9. Задачи

1. Какова активность препарата, если в течение 10 мин распадается 10 000 ядер этого вещества?

4. Возраст древних образцов дерева можно приближенно определить по удельной массовой активности изотопа 14 6 C в них. Сколько лет тому назад было срублено дерево, которое пошло на изготовление предмета, если удельная массовая активность углерода в нем составляет 75 % от удельной массы активности растущего дерева? Период полураспада радона Т = 5570 лет.

9. После Чернобыльской аварии в некоторых местах загрязненность почвы радиоактивным цезием-137 была на уровне 45 Ки/км 2 .

Через сколько лет активность в этих местах снизится до относительно безопасного уровня 5 Ки/км 2 . Период полураспада цезия-137 равен Т = 30 лет.

10. Допустимая активность йода-131 в щитовидной железе человека должна быть не более 5 нКи. У некоторых людей, находившихся в зоне Чернобыльской катастрофы, активность йода-131 доходила до 800 нКи. Через сколько дней активность снижалась до нормы? Период полураспада йода-131 равен 8 суткам.

11. Для определения объема крови у животного используется следующий метод. У животного берут небольшой объем крови, отделяют эритроциты от плазмы и помещают их в раствор с радиоактивным фосфором, который ассимилируется эритроцитами. Меченые эритроциты снова вводят в кровеносную систему животного, и через некоторое время определяют активность пробы крови.

В кровь некоторого животного ввели ΔV = 1 мл такого раствора. Начальная активность этого объема была равна А 0 = 7000 Бк. Активность 1 мл крови, взятой из вены животного через сутки, оказалась равной 38 импульсов в минуту. Определить объем крови животного, если период полураспада радиоактивного фосфора равен Т = 14,3 суток.

Радиоактивное излучение и его виды

Французский физик А. Беккерель в 1896 г. при изучении люминесценции солей урана случайно обнаружил самопроизвольное испускание ими излучения неизвестной природы, которое действовало на фотопластинку, ионизировало воздух, проникало сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Продолжая исследование этого явления, супруги Кюри - Мария и Пьер - обнаружили, что беккерелевское излучение свойственно не только урану, но и многим другим тяжелым элементам, таким, как торий и актиний. Они показали также, что урановая смоляная обманка (руда, из которой добывается металлический уран) испускает излучение, интенсивность которого во много раз превышает интенсивность излучения урана. Таким образом удалось выделить два новых элемента - носителя беккерелевского излучения: полоний и радий .

Обнаруженное излучение было названо радиоактивным излучением , а само явление - испускание радиоактивного излучения - радиоактивностью.

Виды радиоактивного излучения:

1) - излучение

Отклоняется электрическим и магнитным полями, обладает высокой ионизирующей способностью и малой проникающей способностью. Представляет собой поток ядер гелия; заряд -частицы равен +2е, а масса совпадает с массой ядра изотопа гелия . По отклонению - частиц в электрическом и магнитном полях был определен их удельный заряд ,значение которого подтвердило правильность представлений об их природе.

2) -излучение

Отклоняется электрическим и магнитным полями; его ионизирующая способность значительно меньше (примерно на два порядка), а проникающая способность гораздо больше, чем у - частиц. Представляет собой поток быстрых электронов (это вытекает из определения их удельного заряда).

3) -излучение

Не отклоняется электрическим и магнитными полями, обладает относительно слабой ионизирующей способностью и очень большой проникающей способностью, при прохождении через кристаллы обнаруживает дифракцию. Представляет собой коротковолновое электромагнитное излучение с чрезвычайно малой длиной волны м и вследствие этого- ярко выраженными корпускулярными свойствами, т.е. является потоком частиц – -квантов (фотонов).

Радиоактивность – способность некоторых атомных ядер самопроизвольно (спонтанно) превращаться в другие ядра с испусканием различных частиц:

1)Естественная - наблюдается у неустойчивых изотопов, существующих в природе;

2)Искусственная - наблюдается у изотопов, синтезированных посредством ядерных реакций в лабораторных условиях.

Закон радиоактивного распада

Радиоактивный распад - естественное превращение ядер, происходящее самопроизвольно.

Это явление статистическое, поэтому выводы, следующие из законов радиоактивного распада, имеют вероятностный характер.

Постоянная радиоактивного распада - вероятность распада ядра за единицу времени, равная доле ядер, распадающихся за 1 с.

Закон радиоактивного распада : В силу самопроизвольности радиоактивного распада можно считать, что число ядер dN, распавшихся в среднем за интервал времени от t до t+dt, пропорционально промежутку времени dt и числу N ядер, не распавшихся к моменту времени t:

[ N- число нераспавшихся ядер к моменту времени t; - начальное число нераспавшихся ядер, в момент времени t=0; -постоянная радиоактивного распада]

Период полураспада ()- промежуток времени, за который в среднем число нераспавшихся ядер уменьшается вдвое.

Среднее время жизни радиоактивного ядра :

Активность нуклида - число распадов, происходящее с ядрами образца в 1 с:

Единица активности - 1 Бк: 1 беккерель- активность нуклида в радиоактивном источнике, при которой за 1 с происходит один акт распада. 1Бк= 2,703 кюри.

5. Правила смещения для - и -распадов

Материнское ядро - атомное ядро, испытывающее радиоактивный распад.

Дочернее ядро - атомное ядро, возникающее в результате радиоактивного распада.

Правила смещения правила, позволяющие установить, какое ядро возникает в результате распада данного материнского ядра. Эти правила - следствие законов, выполняющихся при радиоактивных распадах, - закона сохранения зарядовых чисел и закона сохранения массовых чисел.

Законы сохранения зарядового и массового чисел

1)Сумма зарядовых чисел возникающих ядер и частиц равна зарядовому числу исходного ядра.

2) сумма массовых чисел возникающих ядер и частиц равна массовому числу исходного ядра.

Правила смещения - следствие законов сохранения зарядового и массового чисел.

Альфа-распадом называют самопроизвольный распад атомного ядра на дочернее ядро и α-частицу (ядро атома 4 He ).

Альфа-распад, как правило, происходит в тяжёлых ядрах с массовым числом

А ≥ 140 (хотя есть несколько исключений).

Правило смещения для α-распада: , где – ядро гелия (a-частица),

Пример (альфа-распад урана-238 в торий-234):

В результате α-распада атом смещается на 2 клетки к началу таблицы Менделеева (то есть заряд ядра Z уменьшается на 2), массовое число дочернего ядра уменьшается на 4.

Бета-распад

Беккерель доказал, что β-лучи являются потоком электронов . Бета-распад - это проявление слабого взаимодействия .

    Понятие радиоактивности

    Закон радиоактивного распада

    Количественная оценка радиоактивности и ее единицы

    Ионизирующие излучения, их характеристики.

    Источники ИИ

  1. Понятие радиоактивности

Радиоактивностью называется спонтанный процесс превращения (распада) атомных ядер, сопровождающегося испусканием особого вида излучения, называемым радиоактивным .

При этом происходит превращение атомов одних элементов в атомы других.

Радиоактивные превращения свойственны лишь отдельным веществам.

Вещество считается радиоактивным, если оно содержит радионуклиды, и в нем идет процесс радиоактивного распада.

Радионуклиды (изотопы)- ядра атомов способных самопроизвольно распадаться называют радионуклидами.

В качестве характеристики нуклида используют символ химического элемента, указывают атомный номер (число протонов) и массовое число ядра (число нуклонов, т.е. общее число протонов и нейтронов).

Например, 239 94 Pu означает, что ядро атома плутония содержит 94 протона и 145 нейтронов, всего 239 нуклонов.

Существуют следующие виды радиоактивного распада:

Бета-распад;

Альфа распад;

Спонтанное деление атомных ядер (нейтронный распад);

Протонная радиоактивность (протонный синтез);

Двухпротонная и кластерная радиоактивность.

Бета-распад – это процесс превращения в ядре атома протона в нейтрон или нейтрона в протон с выбросом бета частицы (позитрона или электрона)

Альфа-распад – характерен для тяжелых элементов, ядра которых, начиная с номера 82 таблицы Д.И.Менделеева, нестабильны, несмотря на избыток нейтронов и самопроизвольно распадаются. Ядра этих элементов преимущественно выбрасывают ядра атомов гелия.

Спонтанное деление атомных ядер (нейтронный распад) – это самопроизвольное деление некоторых ядер тяжелых элементов (уран-238, калифорний 240,248, 249, 250, кюрий 244, 248 и др.). Вероятность самопроизвольного деления ядер незначительна по сравнению с альфа-распадом. При этом происходит деление ядра на два осколка(ядра), близких по массе.

  1. Закон радиоактивного распада

Устойчивость ядер уменьшается по мере увеличения общего числа нуклонов. Она зависит также от соотношения числа нейтронов и протонов.

Процесс последовательных ядерных превращений, как правило, заканчивается образованием стабильных ядер.

Радиоактивные превращения подчиняются закону радиоактивного распада:

N = N 0 e λ t ,

где N, N 0 – число атомов, нераспавшихся на моменты времени t и t 0 ;

λ – постоянная радиоактивного распада.

Величина λ имеет свое индивидуальное значение для каждого вида радионуклида. Она характеризует скорость распада, т.е. показывает, какое количество ядер распадается в единицу времени.

Согласно уравнения закона радиоактивного распада, его кривая является экспонентой.

  1. Количественная оценка радиоактивности и ее единицы

Время, в течение которого, вследствие самопроизвольных ядерных превращений распадается половина ядер, называется периодом полураспада Т 1/2 . Период полураспада Т 1/2 связан с постоянной распада λ зависимостью:

Т 1/2 = ln2/λ = 0,693/λ.

Период полураспада Т 1/2 у разных радионуклидов различен и колеблется в широких пределах – от долей секунды до сотен и даже тысяч лет.

Периоды полураспада некоторых радионуклидов:

Йод-131 - 8,04 суток

Цезий-134 - 2,06 года

Стронций-90 - 29,12 лет

Цезий-137 - 30 лет

Плутоний-239 - 24065 лет

Уран-235 - 7,038 . 10 8 лет

Калий-40 - 1,4 10 9 лет.

Величина, обратная постоянной распада, называется средним временем жизни радиоактивного атома t :

Cкорость распада определяется активностью вещества А:

А = dN/dt = A 0 e λ t = λ N,

где А и А 0 – активности вещества в моменты времени t и t 0 .

Активность – мера радиоактивности. Она характеризуется числом распадов радиоактивных ядер в единицу времени.

Активность радионуклида прямо пропорциональна общему количеству радиоактивных атомных ядер на момент времени t и обратно пропорциональна периоду полураспада:

А = 0,693 N/T 1/2 .

В системе СИ за единицу активности принят беккерель (Бк). Один беккерель равен одному распаду в секунду. Внесистемная единица активности – кюри (Кu).

1 Кu = 3,7 10 10 Бк

1Бк = 2,7 10 -11 Кu.

Единица активности кюри соответствует активности 1 г радия. В практике измерений пользуются также понятиями объемной A v (Бк/м 3 , Кu/м 3), поверхностной А s (Бк/м 2 , Кu/м 2), удельной А m (Бк/м, Кu/м) активности.