Ремонт Дизайн Мебель

Тождественные преобразования выражений. Тождественно равные выражения: определение, примеры

Основные свойства сложения и умножения чисел.

Переместительное свойство сложения: от перестановки слагаемых значение суммы не меняется. Для любых чисел a и b верно равенство

Сочетательное свойство сложения: чтобы к сумме двух чисел прибавить третье число, можно к первому числу прибавить сумму второго и третьего. Для любых чисел a, b и c верно равенство

Переместительное свойство умножения: от перестановки множителей значение произведения не изменяется. Для любых чисел а, b и c верно равенство

Сочетательное свойство умножения: чтобы произведение двух чисел умножить на третье число, можно первое число умножить на произведение второго и третьего.

Для любых чисел а, b и c верно равенство

Распределительное свойство: чтобы умножить число на сумму, можно умножить это число на каждое слагаемое и сложить полученные результаты. Для любых чисел a, b и c верно равенство

Из переместительного и сочетательного свойств сложения следует: в любой сумме можно как угодно переставлять слагаемые и произвольным образом объединять их в группы.

Пример 1 Вычислим сумму 1,23+13,5+4,27.

Для этого удобно объединить первое слагаемое с третьим. Получим:

1,23+13,5+4,27=(1,23+4,27)+13,5=5,5+13,5=19.

Из переместительного и сочетательного свойств умножения следует: в любом произведении можно как угодно переставлять множители и произвольным образом объединять их в группы.

Пример 2 Найдём значение произведения 1,8·0,25·64·0,5.

Объединив первый множитель с четвёртым, а второй с третьим, будем иметь:

1,8·0,25·64·0,5=(1,8·0,5)·(0,25·64)=0,9·16=14,4.

Распределительное свойство справедливо и в том случае, когда число умножается на сумму трёх и более слагаемых.

Например, для любых чисел a, b, c и d верно равенство

a(b+c+d)=ab+ac+ad.

Мы знаем, что вычитание можно заменить сложением, прибавив к уменьшаемому число, противоположное вычитаемому:

Это позволяет числовое выражение вида a-b считать суммой чисел a и -b, числовое выражение вида a+b-c-d считать суммой чисел a, b, -c, -d и т. п. Рассмотренные свойства действий справедливы и для таких сумм.

Пример 3 Найдём значение выражения 3,27-6,5-2,5+1,73.

Это выражение является суммой чисел 3,27, -6,5, -2,5 и 1,73. Применив свойства сложения, получим: 3,27-6,5-2,5+1,73=(3,27+1,73)+(-6,5-2,5)=5+(-9) =-4.

Пример 4 Вычислим произведение 36·().

Множитель можно рассматривать как сумму чисел и -. Используя распределительное свойство умножения, получим:

36()=36·-36·=9-10=-1.

Тождества

Определение. Два выражения, соответственные значения которых равны при любых значениях переменных, называются тождественно равными.

Определение. Равенство, верное при любых значениях переменных, называется тождеством.

Найдём значения выражений 3(x+y) и 3x+3y при x=5, y=4:

3(x+y)=3(5+4)=3·9=27,

3x+3y=3·5+3·4=15+12=27.

Мы получили один и тот же результат. Из распределительного свойства следует, что вообще при любых значениях переменных соответственные значения выражений 3(x+y) и 3x+3y равны.

Рассмотрим теперь выражения 2x+y и 2xy. При x=1, y=2 они принимают равные значения:

Однако можно указать такие значения x и y, при которых значения этих выражений не равны. Например, если x=3, y=4, то

Выражения 3(x+y) и 3x+3y являются тождественно равными, а выражения 2x+y и 2xy не являются тождественно равными.

Равенство 3(x+y)=x+3y, верное при любых значениях x и y, является тождеством.

Тождествами считают и верные числовые равенства.

Так, тождествами являются равенства, выражающие основные свойства действий над числами:

a+b=b+a, (a+b)+c=a+(b+c),

ab=ba, (ab)c=a(bc), a(b+c)=ab+ac.

Можно привести и другие примеры тождеств:

a+0=a, a+(-a)=0, a-b=a+(-b),

a·1=a, a·(-b)=-ab, (-a)(-b)=ab.

Тождественные преобразования выражений

Замену одного выражения другим, тождественно равным ему выражением называют тождественным преобразованием или просто преобразованием выражения.

Тождественные преобразования выражений с переменными выполняются на основе свойств действий над числами.

Чтобы найти значение выражения xy-xz при заданных значениях x, y, z, надо выполнить три действия. Например, при x=2,3, y=0,8, z=0,2 получаем:

xy-xz=2,3·0,8-2,3·0,2=1,84-0,46=1,38.

Этот результат можно получить, выполнив лишь два действия, если воспользоваться выражением x(y-z), тождественно равным выражению xy-xz:

xy-xz=2,3(0,8-0,2)=2,3·0,6=1,38.

Мы упростили вычисления, заменив выражение xy-xz тождественно равным выражением x(y-z).

Тождественные преобразования выражений широко применяются при вычислении значений выражений и решении других задач. Некоторые тождественные преобразования уже приходилось выполнять, например, приведение подобных слагаемых, раскрытие скобок. Напомним правила выполнения этих преобразований:

чтобы привести подобные слагаемые, надо сложить их коэффициенты и результат умножить на общую буквенную часть;

если перед скобками стоит знак "плюс", то скобки можно опустить, сохранив знак каждого слагаемого, заключённого в скобки;

если перед скобками стоит знак "минус", то скобки можно опустить, изменив знак каждого слагаемого, заключённого в скобки.

Пример 1 Приведём подобные слагаемые в сумме 5x+2x-3x.

Воспользуемся правилом приведения подобных слагаемых:

5x+2x-3x=(5+2-3)x=4x.

Это преобразование основано на распределительном свойстве умножения.

Пример 2 Раскроем скобки в выражении 2a+(b-3c).

Применив правило раскрытия скобок, перед которыми стоит знак "плюс":

2a+(b-3c)=2a+b-3c.

Проведённое преобразование основано на сочетательном свойстве сложения.

Пример 3 Раскроем скобки в выражении a-(4b-c).

Воспользуемся правилом раскрытия скобок, перед которыми стоит знак "минус":

a-(4b-c)=a-4b+c.

Выполненное преобразование основано на распределительном свойстве умножения и сочетательном свойстве сложения. Покажем это. Представим в данном выражении второе слагаемое -(4b-c) в виде произведения (-1)(4b-c):

a-(4b-c)=a+(-1)(4b-c).

Применив указанные свойства действий, получим:

a-(4b-c)=a+(-1)(4b-c)=a+(-4b+c)=a-4b+c.

Числа и выражения, из которых составлено исходное выражение, можно заменять тождественно равными им выражениями. Такое преобразование исходного выражения приводит к тождественно равному ему выражению.

Например, в выражении 3+x число 3 можно заменить суммой 1+2 , при этом получится выражение (1+2)+x , которое тождественно равно исходному выражению. Другой пример: в выражении 1+a 5 степень a 5 можно заменить тождественно равным ей произведением, например, вида a·a 4 . Это нам даст выражение 1+a·a 4 .

Данное преобразование, несомненно, искусственно, и обычно является подготовкой к каким-либо дальнейшим преобразованиям. Например, в сумме 4·x 3 +2·x 2 , учитывая свойства степени, слагаемое 4·x 3 можно представить в виде произведения 2·x 2 ·2·x . После такого преобразования исходное выражение примет вид 2·x 2 ·2·x+2·x 2 . Очевидно, слагаемые в полученной сумме имеют общий множитель 2·x 2 , таким образом, мы можем выполнить следующее преобразование - вынесение за скобки. После него мы придем к выражению: 2·x 2 ·(2·x+1) .

Прибавление и вычитание одного и того же числа

Другим искусственным преобразованием выражения является прибавление и одновременное вычитание одного и того же числа или выражения. Такое преобразование является тождественным, так как оно, по сути, эквивалентно прибавлению нуля, а прибавление нуля не меняет значения.

Рассмотрим пример. Возьмем выражение x 2 +2·x . Если к нему прибавить единицу и отнять единицу, то это позволит в дальнейшем выполнить еще одно тождественное преобразование - выделить квадрат двучлена : x 2 +2·x=x 2 +2·x+1−1=(x+1) 2 −1 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.

Рассмотрим две равенства:

1. a 12 *a 3 = a 7 *a 8

Это равенство будет выполняться при любых значениях переменной а. Областью допустимых значений для того равенства будет все множество вещественных чисел.

2. a 12: a 3 = a 2 *a 7 .

Это неравенство будет выполняться для всех значений переменной а, кроме а равного нулю. Областью допустимых значений для этого неравенства будет все множество вещественных чисел, кроме нуля.

О каждом из этих равенств можно утверждать, что оно будет верно при любых допустимых значениях переменных а. Такие равенства в математике называются тождествами .

Понятие тождества

Тождество - это равенство, верное при любых допустимых значениях переменных. Если в данное равенство подставить вместо переменных любые допустимые значения, то должно получиться верное числовое равенство.

Стоит отметить, что верные числовые равенства тоже являются тождествами. Тождествами, например, будут являться свойства действий над числами.

3. a + b = b + a;

4. a + (b + c) = (a + b) + c;

6. a*(b*c) = (a*b)*c;

7. a*(b + c) = a*b + a*c;

11. a*(-1) = -a.

Если два выражения при любых допустимых переменных соответственно равны, то такие выражения называют тождественно равными . Ниже представлены несколько примеров тождественно равных выражений:

1. (a 2) 4 и a 8 ;

2. a*b*(-a^2*b) и -a 3 *b 2 ;

3. ((x 3 *x 8)/x) и x 10 .

Мы всегда можем заменить одно выражение любым другим выражением, тождественно равным первому. Такая замена будет являться тождественным преобразованием.

Примеры тождеств

Пример 1: являются ли тождествами следующие равенства:

1. a + 5 = 5 + a;

2. a*(-b) = -a*b;

3. 3*a*3*b = 9*a*b;

Не все представленные выше выражения будут являться тождествами. Из этих равенств тождествами являются лишь 1,2 и 3 равенства. Какие бы числа мы в них не подставили, вместо переменных а и b у нас все равно получатся верные числовые равенства.

А вот 4 равенство уже не является тождеством. Потому что не при всех допустимых значениях это равенство будет выполняться. Например, при значениях a = 5 и b = 2 получится следующий результат:

Данное равенство не верно, так как число 3 не равняется числу -3.

§ 2. Тождественные выражения, тождество. Тождественное преобразование выражения. Доказательства тождеств

Найдем значения выражений 2(х - 1) 2х - 2 для данных значений переменной х. Результаты запишем в таблицу:

Можно прийти к выводу, что значения выражений 2(х - 1) 2х - 2 для каждого данного значения переменной х равны между собой. По распределительным свойством умножения относительно вычитания 2(х - 1) = 2х - 2. Поэтому и для любого другого значения переменной х значение выражения 2(х - 1) 2х - 2 тоже будут равны между собой. Такие выражения называют тождественно равными.

Например, синонимами являются выражения 2х + 3х и 5х, так как при каждом значении переменной х эти выражения приобретают одинаковых значений (это вытекает из распределительной свойства умножения относительно сложения, поскольку 2х + 3х = 5х).

Рассмотрим теперь выражения 3х + 2у и 5ху. Если х = 1 и в = 1, то соответствующие значения этих выражений равны между собой:

3х + 2у =3 ∙ 1 + 2 ∙ 1 =5; 5ху = 5 ∙ 1 ∙ 1 = 5.

Однако можно указать такие значения х и у, для которых значения этих выражений не будут между собой равными. Например, если х = 2; у = 0, то

3х + 2у = 3 ∙ 2 + 2 ∙ 0 = 6, 5ху = 5 ∙ 20 = 0.

Следовательно, существуют такие значения переменных, при которых соответствующие значения выражений 3х + 2у и 5ху не равны друг другу. Поэтому выражения 3х + 2у и 5ху не являются тождественно равными.

Исходя из вышеизложенного, тождественностями, в частности, являются равенства: 2(х - 1) = 2х - 2 и 2х + 3х = 5х.

Тождеством является каждое равенство, которым записано известные свойства действий над числами. Например,

а + b = b + а; (а + b) + с = а + (b + с); а(b + с) = ab + ас;

ab = bа; (аb)с = a(bc); a(b - с) = ab - ас.

Тождественностями есть и такие равенства:

а + 0 = а; а ∙ 0 = 0; а ∙ (-b) = -ab;

а + (-а) = 0; а ∙ 1 = а; а ∙ (-b) = аb.

1 + 2 + 3 = 6; 5 2 + 12 2 = 13 2 ; 12 ∙ (7 - 6) = 3 ∙ 4.

Если в выражении-5х + 2х - 9 свести подобные слагаемые, получим, что 5х + 2х - 9 = 7х - 9. В таком случае говорят, что выражение 5х + 2х - 9 заменили тождественным ему выражением 7х - 9.

Тождественные преобразования выражений с переменными выполняют, применяя свойства действий над числами. В частности, тождественными преобразованиями с раскрытие скобок, возведение подобных слагаемых и тому подобное.

Тождественные преобразования приходится выполнять при упрощении выражения, то есть замены некоторого выражения на тождественно равное ему выражение, которое должно короче запись.

Пример 1. Упростить выражение:

1) -0,3 m ∙ 5n;

2) 2(3х - 4) + 3(-4х + 7);

3) 2 + 5а - (а - 2b) + (3b - а).

1) -0,3 m ∙ 5n = -0,3 ∙ 5mn = -1,5 mn;

2) 2(3х 4) + 3(-4 + 7) = 6 x - 8 - 1 + 21 = 6x + 13;

3) 2 + 5а - (а - 2b) + (3b - a) = 2 + - а + 2 b + 3 b - а = 3а + 5b + 2.

Чтобы доказать, что равенство является тождеством (иначе говоря, чтобы доказать тождество, используют тождественные преобразования выражений.

Доказать тождество можно одним из следующих способов:

  • выполнить тождественные преобразования ее левой части, тем самым сведя к виду правой части;
  • выполнить тождественные преобразования ее правой части, тем самым сведя к виду левой части;
  • выполнить тождественные преобразования обеих ее частей, тем самым возведя обе части до одинаковых выражений.

Пример 2. Доказать тождество:

1) 2х - (х + 5) - 11 = х - 16;

2) 206 - 4а = 5(2а - 3b) - 7(2а - 5b);

3) 2(3x - 8) + 4(5х - 7) = 13(2x - 5) + 21.

Р а з в’ я з а н н я.

1) Преобразуем левую часть данного равенства:

2х - (х + 5) - 11 = - х - 5 - 11 = х - 16.

Тождественными преобразованиями выражение в левой части равенства свели к виду правой части и тем самым доказали, что данное равенство является тождеством.

2) Преобразуем правую часть данного равенства:

5(2а - 3b) - 7(2а - 5b) = 10а - 15 b - 14а + 35 b = 20b - 4а.

Тождественными преобразованиями правую часть равенства свели к виду левой части и тем самым доказали, что данное равенство является тождеством.

3) В этом случае удобно упростить как левую, так и правую части равенства и сравнить результаты:

2(3х - 8) + 4(5х - 7) = - 16 + 20х - 28 = 26х - 44;

13(2х - 5) + 21 = 26х - 65 + 21 = 26х - 44.

Тождественными преобразованиями левую и правую части равенства свели к одному и тому же виду: 26х - 44. Поэтому данное равенство является тождеством.

Какие выражения называют тождественными? Приведите пример тождественных выражений. Какое равенство называют тождеством? Приведите пример тождества. Что называют тождественным преобразованием выражения? Как доказать тождество?

  1. (Устно) Или есть выражения тождественно равными:

1) 2а + а и 3а;

2) 7х + 6 и 6 + 7х;

3) x + x + x и x 3 ;

4) 2(х - 2) и 2х - 4;

5) m - n и n - m;

6) 2а ∙ р и 2р ∙ а?

  1. Являются ли тождественно равными выражения:

1) 7х - 2х и 5х;

2) 5а - 4 и 4 - 5а;

3) 4m + n и n + 4m;

4) а + а и а 2 ;

5) 3(а - 4) и 3а - 12;

6) 5m ∙ n и 5m + n?

  1. (Устно) является Ли тождеством равенство:

1) 2а + 106 = 12аb;

2) 7р - 1 = -1 + 7р;

3) 3(х - у) = 3х - 5у?

  1. Раскройте скобки:
  1. Раскройте скобки:
  1. Сведите подобные слагаемые:
  1. Назовите несколько выражений, тождественных выражения 2а + 3а.
  2. Упростите выражение, используя переставляющейся и соединительную свойства умножения:

1) -2,5 х ∙ 4;

2) 4р ∙ (-1,5);

3) 0,2 х ∙ (0,3 г);

4)- х ∙ <-7у).

  1. Упростите выражение:

1) -2р ∙ 3,5;

2) 7а ∙ (-1,2);

3) 0,2 х ∙ (-3у);

4) - 1 m ∙ (-3n).

  1. (Устно) Упростите выражение:

1) 2х - 9 + 5х;

2) 7а - 3b + 2а + 3b;

4) 4а ∙ (-2b).

  1. Сведите подобные слагаемые:

1) 56 - 8а + 4b - а;

2) 17 - 2р + 3р + 19;

3) 1,8 а + 1,9 b + 2,8 а - 2,9 b;

4) 5 - 7с + 1,9 г + 6,9 с - 1,7 г.

1) 4(5х - 7) + 3х + 13;

2) 2(7 - 9а) - (4 - 18а);

3) 3(2р - 7) - 2(г - 3);

4) -(3m - 5) + 2(3m - 7).

  1. Раскройте скобки и сведите подобные слагаемые:

1) 3(8а - 4) + 6а;

2) 7р - 2(3р - 1);

3) 2(3x - 8) - 5(2x + 7);

4) 3(5m - 7) - (15m - 2).

1) 0,6 x + 0,4(x - 20), если x = 2,4;

2) 1,3(2а - 1) - 16,4, если а = 10;

3) 1,2(m - 5) - 1,8(10 - m), если m = -3,7;

4) 2x - 3(x + у) + 4у, если x = -1, у = 1.

  1. Упростите выражение и найдите его значение:

1) 0,7 x + 0,3(x - 4), если x = -0,7;

2) 1,7(у - 11) - 16,3, если в = 20;

3) 0,6(2а - 14) - 0,4(5а - 1), если а = -1;

4) 5(m - n) - 4m + 7n, если m = 1,8; n = -0,9.

  1. Докажите тождество:

1) -(2х - у)=у - 2х;

2) 2(x - 1) - 2x = -2;

3) 2(x - 3) + 3(x + 2) = 5x;

4) с - 2 = 5(с + 2) - 4(с + 3).

  1. Докажите тождество:

1) -(m - 3n) = 3n - m;

2) 7(2 - р) + 7р = 14;

3) 5а = 3(а - 4) + 2(а + 6);

4) 4(m - 3) + 3(m + 3) = 7m - 3.

  1. Длина одной из сторон треугольника а см, а длина каждой из двух других сторон на 2 см больше нее. Запишите в виде выражения периметр треугольника и упростите выражение.
  2. Ширина прямоугольника равна х см, а длина на 3 см больше ширины. Запишите в виде выражения периметр прямоугольника и упростите выражение.

1) х - (х - (2х - 3));

2) 5m - ((n - m) + 3n);

3) 4р - (3р - (2р - (г + 1)));

4) 5x - (2x - ((у - х) - 2у));

5) (6а - b) - (4 a – 33b);

6) - (2,7 m - 1,5 n) + (2n - 0,48 m).

  1. Раскройте скобки и упростите выражение:

1) а - (а - (3а - 1));

2) 12m - ((а - m) + 12а);

3) 5y - (6у - (7у - (8у - 1)));

6) (2,1 a - 2,8 b) - (1a – 1b).

  1. Докажите тождество:

1) 10x - (-(5x + 20)) = 5(3x + 4);

2) -(- 3р) - (-(8 - 5р)) = 2(4 - г);

3) 3(а - b - с) + 5(а - b) + 3с = 8(а - b).

  1. Докажите тождество:

1) 12а - ((8а - 16)) = -4(4 - 5а);

2) 4(х + у - <) + 5(х - t) - 4y - 9(х - t).

  1. Докажите, что значение выражения

1,8(m - 2) + 1,4(2 - m) + 0,2(1,7 - 2m) не зависит от значения переменной.

  1. Докажите, что при любом значении переменной значение выражения

а - (а - (5а + 2)) - 5(а - 8)

является одним и тем же числом.

  1. Докажите, что сумма трех последовательных четных чисел делится на 6.
  2. Докажите, что если n - натуральное число, то значение выражения -2(2,5 n - 7) + 2 (3n - 6) является четным числом.

Упражнения для повторения

  1. Сплав массой 1,6 кг содержит 15 % меди. Сколько кг меди содержится в этом сплаве?
  2. Сколько процентов составляет число 20 от своего:

1) квадрата;

  1. Турист 2 ч шел пешком и 3 ч ехал на велосипеде. Всего турист преодолел 56 км. Найдите, с какой скоростью турист ехал на велосипеде, если она на 12 км/ч больше за скорость, с которой он шел пешком.

Интересные задачи для учеников ленивых

  1. В чемпионате города по футболу участвуют 11 команд. Каждая команда играет с другими по одному матчу. Докажите, что в любой момент соревнований найдется команда, которая проведет к этому моменту четное число матчей или не провела еще ни одного.

В ходе изучения алгебры мы сталкивались с понятиями многочлен (например ($y-x$ ,$\ 2x^2-2x$ и тд) и алгебраическая дробь(например $\frac{x+5}{x}$ , $\frac{2x^2}{2x^2-2x}$,$\ \frac{x-y}{y-x}$ и тд). Сходство этих понятий в том, что и в многочленах, и в алгебраических дробях присутствуют переменные и числовые значения, выполняются арифметические действия: сложение, вычитание, умножение, возведение в степень. Отличие этих понятий состоит в том, что в многочленах не производится деление на переменную, а в алгебраических дробях деление на переменную можно производить.

И многочлены , и алгебраические дроби в математике называются рациональными алгебраическими выражениями. Но многочлены являются целыми рациональными выражениями, а алгебраические дроби- дробно- рациональными выражениями.

Можно получить из дробно --рационального выражения целое алгебраическое выражение используя тождественное преобразование, которое в данном случае будет являться основным свойством дроби - сокращением дробей. Проверим это на практике:

Пример 1

Выполнить преобразование:$\ \frac{x^2-4x+4}{x-2}$

Решение: Преобразовать данное дробно-рациональное уравнение можно путем использования основного свойства дроби- сокращения, т.е. деления числителя и знаменателя на одно и то же число или выражение, отличное от $0$.

Сразу данную дробь сократить нельзя,необходимо преобразовать числитель.

Преобразуем выражние стоящее в числителе дроби,для этого воспользуемся формулой квадрата разности :$a^2-2ab+b^2={(a-b)}^2$

Дробь имеет вид

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}\]

Теперь мы видим, что в числителе и в знаменателе есть общий множитель --это выражение $x-2$, на которое произведем сокращение дроби

\[\frac{x^2-4x+4}{x-2}=\frac{x^2-4x+4}{x-2}=\frac{{(x-2)}^2}{x-2}=\frac{\left(x-2\right)(x-2)}{x-2}=x-2\]

После сокращения мы получили, что исходное дробно-рациональное выражение $\frac{x^2-4x+4}{x-2}$ стало многочленом $x-2$, т.е. целым рациональным.

Теперь обратим внимание на то, что тождественными можно считать выражения $\frac{x^2-4x+4}{x-2}$ и $x-2\ $ не при всех значениях переменной, т.к. для того, чтобы дробно-рациональное выражение существовало и было возможно сокращение на многочлен $x-2$ знаменатель дроби не должен быть равен $0$ (так же как и множитель, на который мы производим сокращение. В данном примере знаменатель и множитель совпадают, но так бывает не всегда).

Значения переменной, при которых алгебраическая дробь будет существовать называются допустимыми значениями переменной.

Поставим условие на знаменатель дроби: $x-2≠0$,тогда $x≠2$.

Значит выражения $\frac{x^2-4x+4}{x-2}$ и $x-2$ тождественны при всех значениях переменной, кроме $2$.

Определение 1

Тождественно равными выражениями называются те, которые равны при всех допустимых значениях переменной.

Тождественным преобразованием является любая замена исходного выражения на тождественно равное ему.К таким преобразованиям относятся выполнение действий: сложения, вычитания, умножение, вынесение общего множителя за скобку, приведение алгебраических дробей к общему знаменателю, сокращение алгебраических дробей, приведение подобных слагаемых и т.д. Необходимо учитывать,что ряд преобразований, такие как, сокращение, приведение подобных слагаемых могут изменить допустимые значения переменной.

Приемы, использующиеся для доказательств тождеств

    Привести левую часть тождества к правой или наоборот с использованием тождественных преобразований

    Привести обе части к одному и тому же выражению с помощью тождественных преобразований

    Перенести выражения, стоящие в одной части выражения в другую и доказать, что полученная разность равна $0$

Какое из приведенных приемов использовать для доказательства данного тождества зависит от исходного тождества.

Пример 2

Доказать тождество ${(a+b+c)}^2- 2(ab+ac+bc)=a^2+b^2+c^2$

Решение: Для доказательства данного тождества мы используем первый из приведенных выше приемов, а именно будем преобразовывать левую часть тождества до ее равенства с правой.

Рассмотрим левую часть тождества:$\ {(a+b+c)}^2- 2(ab+ac+bc)$- она представляет собой разность двух многочленов. При этом первый многочлен является квадратом суммы трех слагаемых.Для возведения в квадрат суммы нескольких слагаемых используем формулу:

\[{(a+b+c)}^2=a^2+b^2+c^2+2ab+2ac+2bc\]

Для этого нам необходимо выполнить умножение числа на многочлен.Вспомним, что для этого надо умножить общий множитель,стоящий за скобками на каждое слагаемое многочлена,стоящего в скобках.Тогда получим:

$2(ab+ac+bc)=2ab+2ac+2bc$

Теперь вернемся к исходному многочлену,он примет вид:

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)$

Обратим внимание, что перед скобкой стоит знак «-» значит при раскрытии скобок все знаки, которые были в скобках меняются на противоположные.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc$

Приведем подобные слагаемые,тогда получим, что одночлены $2ab$, $2ac$,$\ 2bc$ и $-2ab$,$-2ac$, $-2bc$ взаимно уничтожатся, т.е. их сумма равна $0$.

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2+2ab+2ac+2bc-(2ab+2ac+2bc)= a^2+b^2+c^2+2ab+2ac+2bc-2ab-2ac-2bc=a^2+b^2+c^2$

Значит путем тождественных преобразований мы получили тождественное выражение в левой части исходного тождества

${(a+b+c)}^2- 2(ab+ac+bc)=\ a^2+b^2+c^2$

Заметим, что полученное выражение показывает, что исходное тождество --верно.

Обратим внимание, что в исходном тождестве допустимы все значения переменной, значит мы доказали тождество используя тождественные преобразования, и оно верно при всех допустимых значениях переменной.