Ремонт Дизайн Мебель

Вода и ее применение. Использование воды в промышленности

Промышленность не может существовать без воды. Она основана на «мокрых» технологиях. Вода нужна для получения пара, а также для многих процессов: для охлаждения, промывки, поддержания концентрации химических веществ в растворах и т. п. Вода используется как промышленное сырье, так как в соленых подземных, озерных и морских водах содержится вся таблица Менделеева.

Для обеспечения всех потребностей промышленности ежегодно забирается из , озер и морей 1000 км3 воды. Примерно половина этой воды затрачивается на теплоэлектростанциях для получения пара и охлаждения, а остальная - в других отраслях промышленности.

На самом деле промышленность использует гораздо больше воды, чем забирает ее из водоисточников, поскольку со второй половины XX в. началось применение так называемого оборотного водоснабжения, что означает многократное использование одной и той же воды, однажды забранной из водоисточника после ее очередной очистки. Конечно, часть воды при этом теряется на испарение и фильтрацию, и эти потери приходится восполнять, но они количественно значительно уступают объемам воды, которые пришлось бы забирать из рек. Так, в России оборотное водоснабжение составляет 170 км3 в год, а на промышленные нужды уходит всего 70 км3. Таким образом, для бытовых, сельскохозяйственных и промышленных нужд ежегодно изымается во всем мире из природных вод около 4400 км3. Это всего 1/10 часть годового рек, 1/20 объема пресных вод в озерах и совсем ничтожная часть запаса пресных вод в . Казалось бы, это не может существенно влиять на водные объекты. Но в отдельных районах мира изъятие воды серьезно влияет на окружающую среду. Так, в реки Амударья и почти полностью отдают свои воды на и водоснабжение, и потому исчезает море. В по этой же самой причине пересохла в низовье почти полностью река Колорадо.

Чтобы использовать воду, необходимы . Самые распространенные из них - плотины, с помощью которых создаются искусственные проточные озера - водохранилища. Другое наиболее известное сооружение - каналы, которые отводят воду из реки или водохранилища. XX век можно назвать веком строительства плотин, создания и каналов, в том числе самых крупных, которые построены в основном во второй половине XX в. Они необходимы для получения энергии, орошения, водоснабжения, защиты от наводнении и рыболовства.

Крупные многоцелевые водохранилища, и особенно каскады водохранилищ на реке или в одном бассейне, заметно изменяют состояние окружающей среды, нарушая устойчивость водных экосистем. Но даже каскад крупных водохранилищ на не вызвал столько изменений, сколько хозяйственная деятельность на всей площади бассейна этой реки.

Вода довольно широко используется в промышленности, на ряду со всеми остальными минералами и элементами которые есть на Земле, вода потребляется больше всего. Чаще всего это касается различных промышленных комплексов, которые занимаются металлургией, химическими веществами, нефтеперерабатывающие комплексы и многие другие, они употребляют воду в 70% случаях, остальные 30% использует промышленность, которая изготавливает непосредственно продукты питание и прочее. Если брать в пример использование воды, самым простым будет металлургические цехи, в которых воду используют для промывания деталей и прочего, чаще всего воду используют чистую, которая пригодна для питья. Это столь важно, сколько и предотвращение расходов употребления питьевой воды, а особенно возвращение воды обратно в источнике. Речь идет о том, что после использование воды для промывания и прочих целей, воду возвращают в реки, озера и т.д. Однако основной проблем является то, что предприятия могут быть не обустроены качественно и полноценно, что бы возвращать в источник очищенную воду. Это приводит к загрязнению воды и продолжению использования питьевой воды в том же количестве. Если своевременно позаботится о системах очистки и водоснабжения можно будет избежать множества причин загрязнения, а также экономить воду которую используют, так как после очистки воду можно будет использовать повторно, что обеспечит своего рода круговорот воды на предприятии с меньшими затратами на получение новой.
Разновидностей очистки воды чрезвычайно много, все зависит от количества воды, которую надо очистить, от вещества от которой нужно ее очистить и прочее. Конечно, системы очистки не дешевые и многие на этом экономят, а в итоге кто-то зарабатывает деньги, а кто-то теряет здоровье после употребление не качественной воды. Всего этого можно избежать и остаться при своих интересах, если позаботится о системе водоснабжения, канализации и очистки воды.

Наиболее распространенными методами очистки являются механическая, биологическая, физико-химическая и прочие. Все методы говорят по сути сами за себя. Во время механической очистки, вода очищается от различных крупных частиц, которые могут быть в воде после использования, например, крупицы какого-либо металла или песка и прочее. Биологическая больше направлена на очистку воды от различных микроорганизмов, которые могут быть в воде после использования в промышленности. Физико-химическая очистка предназначена для очистки различных примесей и биологических органических веществ. Также довольно часто могут использовать своего рода осветлители для очистки воды.
Очень важно правильное и главное гуманное отношение к воде, так как в любом случае эту воду будут использовать для питья и приготовления пищи. Поэтому если Вы видите нарушения санитарных норм или же, как какое-то предприятие сливает сточные воды в реки и озера, удостоверьтесь, что правительство знает об этом, ведь именно Вы можете в конечном итоге пить эту воду и губить свое здоровье. Помимо промышленности, вода играет очень важную роль во всем. Например,

Вода и ее роль в промышленном производстве

Вода имеет ключевое значение в процессах появления жизни на Земле и ее постоянном поддержании, поскольку именно вода формирует климат, а еще она необходима для химических процессов, происходящих в телах людей и животных. Роль воды в жизни людей трудно переоценить. К основным потребителям пресной воды относятся: сельское хозяйство, промышленность, включая энергетику и коммунальное хозяйство. В промышленном производстве наиболее водоемкими являются химическая, целлюлозно-бумажная и металлургическая промышленность. Так, на изготовление 1 т синтетического волокна расходуется 2500...5000, пластмассы - 500...1000, бумаги - 400...800, стали и чугуна - 160...200 м3 воды. В промышленных целях по разным источникам расходуется от 8 до 20% всей используемой в мире воды, из них свыше 85% воды, расходуется в процессах охлаждения. Остальная часть расходуется в процессах мойки, промывки газов, для гидротранспорта и в качестве растворителя. Приблизительно полмиллиона литров воды расходуется на выпуск каждого легкового автомобиля; это количество включает как безвозвратно расходуемую воду, так и воду повторного использования.

На данный момент качество воды в различных регионах страны может сильно отличаться (все зависит от численности населения, рек, стоков, наличия крупных предприятий), но в целом вода не может похвастаться высоким качеством. Для повышения качества водоочистки приходится использовать самые современные технологии, а процесс очистки делать по-настоящему комплексным и проводить водоподготовку. При производстве и выпуске продукции, качество воды определяют характеристики конечного изделия. Это достигается либо путем удаления из воды вредных для используемого оборудования, или же готовой продукции веществ, либо охлаждением. Подготовленная вода, после прохождения химической очистки и (или) охлаждения в промышленном оборудовании, поступает непосредственно в производственный цикл.

Промышленная водоподготовка.

Водоподготовка - цикл мероприятий по водоочистке, который осуществляется с помощью установок умягчения, обезжелезивания а так же с помощью сорбционных, осадочных установок и УФ-обеззараживателей. Используя подобную автоматизированную технику для промышленной водоподготовки, можно сделать водоочистку практически непрерывным процессом, не тормозящим производство и обеспечивающим все стадии работ водой необходимого качества.

Специалисты выделяют следующие основные проблемы, стоящие перед промышленной водоподготовкой: жесткость воды, большое число примесей, цвет, замах, наличие бактерий и вирусов, другие загрязнения. Промышленная водоподготовка может включать в себя целый ряд очистительных мер. Одной из главных негативных характеристик воды является высокое содержание железа, влияющее как на работу использующей воду техники, так и на здоровье человека (если это, к примеру, пищевая индустрия), поскольку осадки надолго задерживаются в организме и влияют на его ежедневное функционирование.

Промышленная водоподготовка - это не только значительное повышение качества производимой продукции и продление срока службы оборудования, но и снижение воздействия вредных веществ на окружающую среду за счет уменьшения вредных водостоков. Основное предназначение промышленной водоочистки - это очистка воды для предприятий и объектов с большим потреблением воды в сутки. Очистка воды, в зависимости от требований потребителя применяется как общая, так и доочистка. Общая очистка включает в себя очистку от железа и солей жесткости. Доочистка - это обессоливание воды и её полное умягчение.

Для обеспечения водой предприятий, предъявляющих к качеству воды повышенные требования, таких как: медицинские учреждения, фармацевтические и пищевые объекты, спортивные комплексы и детские учреждения, применяется многоступенчатая система очистки. Сейчас практически все пищевые и мясомолочные предприятия РФ производят реконструкцию с заменой изношенного, или морально устаревшего оборудования на новые образцы импортного и российского производства. В связи с этим значительно меняется подход к исходной воде, поступающей по общегородским, или другим водопроводным сетям общего назначения, или воде, поступающей из артезианских скважин. В системах применяется реагентная обработка воды - для уничтожения опасных микроорганизмов, содержащихся в воде, обессоливание с применением обратного осмоса и ионного обмена, а также селективные ионообменные технологии.

На особо крупных предприятиях тяжелой промышленности в технологических циклах применяют оборудование, в процессе работы которого требуется его охлаждение. В этих целях, на таких предприятиях, зачастую используют системы оборотного водоснабжения, но при эксплуатации данных систем появляются проблемы с составом подпиточной воды и загрязнением стоков оборотной воды.

Обезжелезивание - процесс быстрой водоочистки при помощи обезжелезивателя, который производится в двух основных вариациях. В реагентный обезжелезиватель, используемый в быту и на промышленной водоподготовке, для улучшения и ускорения обезжелезивания засыпаются специальные вещества. Безреагентный обезжелезиватель для промышленной водоподготовки осуществляет водоподготовку каталитическим методом.

Кроме обезжелезивания, в промышленной водоподготовке часто проводится умягчение воды , которое осуществляется посредством специализированного оборудования. Жесткая вода не только противопоказана для питья, без проведения водоочистки она также влияет на работу оборудования, так как нагревающие элементы быстро зарастают и в конце концов ломаются. Умягчение воды во время промышленной водоподготовки производится с помощью метода ионного обмена, реагентного умягчения или нанофильтрации, которые даже при непрерывной водоочистке справляются с ионами кальция и магния, губительными для оборудования последующей водоподготовки.

Иногда возникает необходимость водоподготовки посредством водоочистки от больших остаточных элементов, примесей или же видимых частиц. Для такой водоподготовки используются особые осадочные установки, удаляющие из водопроводной или добытой из скважин воды песок, ржавчину или другие материалы. То есть осадочная техника занимается механической водоочисткой, важной, например, для коммунальных служб и различных предприятий.

Для ряда производств водоочистка от металлов и различных солей является недостаточной, поскольку возникает необходимость полноценной промышленной водоподготовки с удалением любых, даже самых малых примесей. Для этого используются сорбционные установки водоподготовки , специализирующиеся на активной очистке сточных и других вод от осевших малых частиц размером в 5 микрон. Данный этап промышленной водоподготовки следует, как правило, за более грубой водоочисткой от коллоидных примесей. Работают сорбционные установки по водоподготовке за счет использования синтетических волокнистых материалов вроде лепестков полиэстера и полипропиленовых нитей.

Важным этапом в промышленной водоподготовке является дополнительная очистка от бактерий, вирусов и других вредных элементов, влияющих на показатели воды и ее возможности по потреблению и использованию в производстве. Одним из самых современных решений данного вопроса стали ультрафиолетовые лампы для промышленной водоподготовки. Это позволяет использовать УФ-обеззараживатели в водоподготовке на предприятиях пищевой промышленности, где удаление вредоносных элементов и водоочистка обязательны для простой безопасности и сохранности итогового продукта.

Промышленная водоподготовка подразумевает и важность слежения над кислотно-щелочными показателями воды . Например, жидкость с высоким уровнем pH негативно воздействует на технику, которая ломается при долгом использовании воды, не прошедшей водоподготовку. Более того, несбалансированная вода вредна для здоровья, а многие химические процессы в воде, не прошедшей водоподготовку и балансировку кислотно-щелочных показателей, или невозможны, или происходят не в полную силу. Таким образом, предварительная водоочистка от кислот и нормализация уровня pH обеспечат сохранность оборудования (включая другие устройства водоподготовки) и значительное улучшение качества самой воды.

В наше время проблема очистки воды становится все более и более актуальной. Это касается как очистки питьевой воды, так и водоподготовки промышленных предприятий. Конечно, для разных отраслей промышленности необходима та или иная степень очистки воды. Но в любом случае, при необходимости получить воду самого лучшего качества, без примесей солей и других составляющих, одной только обычной фильтрации совершенно недостаточно.

Современные технологии, основанные на принципе обратного осмоса, позволяют произвести очистку воды на молекулярном уровне. И освободить ее не только от солей, но и от разного рода органических соединений, в том числе вирусов и бактерий. обессоливание воды, или деминерализация -очень важный физический процесс удаления солей при использовании воды в технологических процессах котельных, парогенераторных, пищевых, медицинских и других установках, для предотвращения накипи и быстрого износа оборудования. За счет обессоливания, водоподготовка снижает концентрацию солей и минералов до заданного значения, и делает исходную воду пригодной в качестве питьевой, охлаждающей, или технологичной жидкости.

Прямой осмос использован на применении мембран, способных пропускать только молекулы воды, задерживая при этом все другие молекулы. Разделив такой мембраной, например, два сообщающихся сосуда с более, или менее чистой водой, можно увидеть, что уровень воды в сосуде с менее чистой водой со временем поднимется. Это произойдет за счет того, что через мембрану будут поступать только молекулы воды, стремясь уравновесить концентрацию в обоих сосудах. Это и есть явление прямого осмоса. Логически следует, что если создать давление в более "грязном" сосуде, то молекулы воды будут поступать, наоборот, в более "чистый" сосуд, делая воду еще более чистой. А это уже принцип обратного осмоса.

Таким образом, используя такие мембраны вместе с фильтрами предварительной очистки, можно создать высокоэффективную систему водоподготовки предприятий, основанную на принципе обратного осмоса. Иными словами, процесс обратного осмоса основан на прохождение воды сквозь мембрану из более насыщенного раствора солей в менее насыщенный раствор под действием давления, которое превышает разницу осмотических значений давлений в обоих растворах.

Использование оборотной воды.

Интенсивное развитие промышленности и сельскохозяйственного производства, повышение уровня благоустройства городов и населенных пунктов, значительный прирост населения обусловили в последние десятилетия дефицит и резкое ухудшение качества водных ресурсов практически во всех регионах России.

Одним от основных путей удовлетворения потребностей общества в воде является инженерное воспроизводство водных ресурсов, т.е. их восстановление и приумножение не только в количественном, но и в качественном отношении.

Перспективы рационального воспроизводства технологического расхода воды связаны с созданием на предприятиях систем повторно-последовательного, оборотного и замкнутого водоснабжения. В их основу положено удивительное свойство воды, позволяющее ей не изменять своей физической сущности после участия в производственных процессах.

Промышленность России характеризуется высоким уровнем развития систем оборотного водоснабжения, за счет которых экономия свежей воды, расходуемой на производственные нужды, составляет в среднем 78%. Лучшие показатели использования оборотных систем имеют предприятия газовой (97%), нефтеперерабатывающей (95%) отраслей, черной металлургии (94%), химической и нефтехимической (91%) промышленности, машиностроения (85%).

Максимальные расходы воды в системах оборотного и повторно-последовательного водоснабжения характерны для Уральского, Центрального, Поволжского и Западно-Сибирского экономических районов. В целом по России соотношение объемов использования свежей и оборотной воды составляет соответственно 35,5 и 64,5%.

Широкое внедрение совершенных водооборотных систем (вплоть до замкнутых) способно не только решить проблему водообеспечения потребителей, но и сохранить природные водоисточники в экологически чистом состоянии.


Вода – вещество, которое находится в жидком состоянии, оно бесцветное, прозрачное, не имеет запаха, оно может изменять форму (например: если пробирку наклонить, то вода изменит форму), оно увеличивает предметы (пример: мои пальцы, которыми я держу пробирку, кажутся больше, если смотреть на них через пробирку с водой) и может растворять разные вещества.

Свойство прозрачности воды можно доказать, помещая за пробирку с водой разные картинки или даже страницу с текстом - можно увидеть, что находится за пробиркой. Этот опыт доказывает, что стекло тоже прозрачное. Можно доказать и по другому. Положим картинку в тарелку и нальем в нее воду. Также можно увидеть, что находится в тарелке, залитое водой. Этот опыт также доказывает свойство воды - прозрачность. Свойство прозрачности воды используется человеком очень широко: аквариумы с диковинными рыбками и водорослями, бассейны и фонтаны с красивым дизайном дна и стен и другое.

Вода не имеет запаха. Можно понюхать и убедиться. Это свойство воды человек использует, например, при спасении от преследующих хищных животных: стоит войти в воду – как след человека будет потерян, животное не сможет определить направление движения человека, вошедшего в воду.

Вода принимает форму той емкости, в которую ее наливают (например: перелить воду из стакана в лабораторные колбы разной формы). Это свойство воды также широко используется человеком. Например: налив воду в емкость тем самым можно подчеркнуть своеобразие этой емкости, ее дизайн и красоту.

Вода течет. Например: если вылить ее на плоский поднос - она растекается в лужу. Человеком это свойство воды широко используется в жилищно-коммунальном хозяйстве: вода, протекая по трубам, поступает в наши дома и квартиры.

Предметы в воде кажутся больше, чем на самом деле. Это можно заметить, посмотрев, как увеличилась та часть картинки, которая видна через воду. А может быть, это стекло увеличивает? Нет, ведь рыбки в аквариуме тоже кажутся больше, если смотреть только через воду.

Вода может растворять разные вещества. Если в пробирку насыпать измельченный мел, то вода станет мутной потому, что часть мела растворилась в воде.

Вода - прекрасный растворитель и потому невозможно встретить в природе жидкую "чистую" воду, то есть воду, в которой не растворены какие-либо вещества. Вода - прекрасная среда обитания живых организмов и потому невозможно встретить в природе "чистую" воду, т.е. воду, в которой бы не обитали микробы, бактерии, моллюски, рыбы и т.д.

Вода растворяет не все вещества. Если влить в пробирку с водой вазелиновое масло, оно не смешается с водой, а будет плавать поверх воды.

Воду можно очистить с помощью фильтра. Если положить в воронку бумажную салфетку или вату и пропустить через нее воду, в которой растворен мел, то можно увидеть, что вода стала более чистой. Если сделать это еще несколько раз, вода станет совсем прозрачной.

Общеизвестно, что жизнь на планете Земля возникла благодаря наличию воды. В воде зародилась жизнь, вышла из нее, постепенно заселив сушу и воздух. Вода образует водную оболочку нашей планеты - гидросферу (от греческих слов “гидор” - вода, “сфера” - шар). Вода занимает три четверти поверхности Земли. В природе ею заполнены чаши океанов, моря, озёра, реки, болота. Есть и искусственные водоёмы для хранения и переброса воды - пруды, водохранилища и каналы. Вода есть также и в глубине Земли, и в её атмосфере.

Всем растениям и животным жизненно необходима вода. Наши организмы примерно на 75% состоят из воды. Без воды наш организм просто не сможет функционировать.

Без воды немыслима жизнь на планете Земля, немыслима жизнедеятельность человека. Вода - наиболее распространенное, доступное и дешевое вещество. Именно доступность и незаменимость воды обусловила ее широкое применение в быту, промышленности и сельском хозяйстве, медицине - во всех сферах человеческой деятельности. Трудно вспомнить, где вода не применяется.

Вода - это самая большая и удобная дорога. По ней день и ночь плывут суда, везут разные грузы, пассажиров. Вода ещё и кормит - по морям и океанам плывут тысячи рыболовных судов.

В теплоэнергетике вода - теплоноситель и рабочее тело. Вода “добывает электрический ток, работая на электростанциях. Тепловые электростанции используют на производство электроэнергии много воды. В частности, на охлаждение конденсатора турбины энергоблока. Постоянное бесконтрольное увеличение производства электроэнергии только на тепловых электростанциях может привести к экологической катастрофе.

В металлургии вода используется для охлаждения оборудования. Только на охлаждение одной доменной печи используется огромное количество воды ежечасно.

В химии вода - растворитель; один из составных частей некоторых химических реакций; "транспортное средство", то есть среда, позволяющая перемещать составляющие продукты реакции из одного технологического аппарата в другой. В конечном итоге, вывод в окружающую среду жидких отходов производства осуществляется тоже в виде водных растворов.

В медицине вода - растворитель, лекарственное средство, средство санитарии и гигиены, "транспортное средство". Повышение уровня медицинского обслуживания и рост народонаселения планеты Земля естественным образом ведет к росту водопотребления на медицинские цели.

В сельском хозяйстве вода – "транспортное средство" питательных веществ к клеткам растений и животных, участник процесса фотосинтеза, регулятор температуры живых организмов. Объемы воды, которые затрачиваются для полива сельскохозяйственных растений, при кормлении животных, птицы, не уступают объемам, используемым промышленностью.

В быту вода - средство санитарии и гигиены, участник химических реакций, протекающих при приготовлении пищи, теплоноситель, "транспортное средство", удаляющее продукты жизнедеятельности человека в канализацию. Вода моет всех людей, машины, дороги. Норма водопотребления на одного человека существенно разная по отдельным городам. Вспомним о приблизительно 6 миллиардах человек, населяющих планету Земля и нам станет ясно, почему время от времени возникают разговоры о все возрастающих проблемах с питьевой водой даже в регионах планеты, где очень много воды.

Без воды не замесить тесто для хлеба, не приготовить бетон для стройки, не сделать ни бумагу, ни ткань для одежды, ни резину, ни металл, ни конфеты, ни пластмассу, ни лекарств - ничего не сделать без воды!

Вода - единственное вещество на Земле, которое существует сразу в разных состояниях: вода может быть жидкой, при охлаждении переходит в твердое состояние – лед, а при нагревании превращается из жидкости в пар.

Отследим "обратную связь" между потребляемой человеком водой и тем набором растворенных веществ, твердых включений и микроорганизмов, которые сбрасываются в виде бытовых сточных вод, жидких отходов промышленного и сельскохозяйственного производства. Например, лет 200 назад для оценки качества питьевой воды использовались только органолептические методы: оценка цвета, вкуса, запаха. Сейчас перечень анализов, выполняемых санитарной лабораторией предприятия пищевой промышленности, размещается на двух страницах, заполненных мелким шрифтом. Какие же существуют методы водоподготовки и водоочистки для того, чтобы человек мог использовать воду в нужных целях?

Начнем с понятия: что такое водоподготовка и очистка воды? Обратимся к справочной литературе. Энциклопедический словарь медицинских терминов сообщает: "Очистка воды - комплекс санитарно-технических мероприятий, направленных на удаление примесей, представляющих опасность для человека". Сельскохозяйственный словарь: "Очистка воды - приведение качества исходной воды в соответствие с требованиями потребителя. Способы очистки воды: осветление (устранение мутности), обесцвечивание (устранение органических веществ), обеззараживание, дезодорация, опреснение, умягчение". Большая Советская Энциклопедия: "Водоподготовка - обработка воды, поступающей из природного водоисточника на питание паровых и водогрейных котлов или для различных технологических целей. Водоподготовка производится на ТЭС, транспорте, в коммунальном хозяйстве, на промышленных предприятиях.



Химическая промышленность - один из крупнейших потребителей воды. Вода используется почти во всех химических производствах для разнообразных целей. На отдельных химических предприятиях потребление воды достигает 1 млн. м 3 в сутки. Превращение воды в один из важнейших элементов химического производства объясняется:

  • наличием комплекса ценных свойств (высокая теплоемкость, малая вязкость, низкая температура кипения и др.);
  • доступностью и дешевизной (затраты исключительно на извлечение и очистку);
  • нетоксичностью;
  • удобством использования в производстве и транспортировки. В химической промышленности вода используется в следующих направлениях:
  1. Для технологических целей в качестве:
    • растворителя твердых, жидких и газообразных веществ;
    • среды для осуществления физических и механических процессов (флотация,транспортировка твердых материалов в виде пульпы и др.);
    • промывной жидкости для газов;
    • экстрагента и абсорбента различных веществ.
  2. Как теплоноситель (в виде горячей воды и пара) и хладагента для обогрева и охлаждения аппаратуры.
  3. В качестве сырья и реагента для производства различной химической продукции (например, водорода, ацетилена, серной и азотной кислот и др.)

Воды морей и океанов являются источниками сырья для добычи многих химических веществ. В промышленных масштабах из них извлекаются хлориды натрия и магния, бром, иод и другие продукты. В настоящее время их рассматривают и как потенциальные источники получения многих других элементов. Так, например, содержание элементов в водах Океана составляет (%): калия 3,8*10 -2 , ванадия 5*10 -8 , золота 4*10 -10 , серебра 5 10 -9 , урана 2*10 -7 . Приняв массу воды на планете равной 1,4 10 18 тонн, получим соответственно содержание в ней золота 5,6*10 6 тонн и урана 2,8*10 9 т. Всего 0,01% этой массы урана достаточно для обеспечения энергией всей планеты на протяжении 100 лет.

К новым промышленным методам получения полезных компонентов из вод Мирового океана относятся эксплуатируемые в Японии установки по извлечению урана с помощью комплексных соединений и отечественный проект «Гидрометалл» по извлечению из конкреций Тихого океана железа и марганца, схема которого приведена на рис. 3.1.

Рисунок 3.1 - Схема «Гидрометалл»:
1 - подводный реактор для переработки конкреций;
2 - плавучая база.
A - извлекаемые со дна конкреции;
B - реагенты для пере-работки конкреций, пода-ваемые в реактор;
C - готовая продукция;
D - отработанное сырье, возвращаемое в океан

Масштабы потребления воды химической промышленностью зависят от типа производства и колеблются в широких пределах. Так, расходные коэффициенты по воде (в м 3 на тонну продукции) составляют: для азотной кислоты 200, вискозного волокна 1200, аммиака 1500, синтетического каучука 1600, капронового волокна 2500. Например, завод капронового волокна расходует такое же количество воды, как город с населением 120000 человек, а специализированный завод пластических масс по потреблению воды эквивалентен городу с населением 400000 человек.

Громадный расход технологической воды, наряду с большим объемом загрязненных вод, сбрасываемых химическими предприятиями (до 40% стока речных вод используется только на разбавление их до безопасной концентрации содержащихся в них веществ), выдвигает первоочередную задачу рационального использования водных ресурсов в химической и нефтехимической промышленности. Эта задача решается путем:

  • разработки научно обоснованных норм расхода воды на технологические операции;
  • максимально полного использования отходов и снижения за счет этого потребности в очистительных сооружениях;
  • замены водяного охлаждения аппаратуры воздушным;
  • организации замкнутых без сточных производств и водооборотных циклов.

Водооборотные циклы технологических установок, цехов и химических предприятий в целом являются важнейшим фактором рационального использования водных ресурсов. В этих циклах осуществляется многократное использование воды без выброса загрязненных стоков в водоемы, а потребление свежей воды для ее восполнения ограничено только технологическими превращениями (в качестве компонента сырья) и естественными потерями.

Рисунок 3.2 – Цикл с охлаждением оборотной воды:

Рисунок 3.3 – Цикл с очисткой оборотной воды:

  1. Насосная станция;
  2. Градирня (бассейн);
  3. Очистные сооружения;

В химических производствах используются три схемы водооборота в зависимости от тех изменений, которые претерпевает вода в процессе производства:

  • вода только нагревается и должна быть перед возвратом охлаждена в градирнях или бассейнах (рис. 3.2);
  • вода только загрязняется и должна быть перед возвратом очищена в специальных очистных сооружениях (рис.3.3);
  • вода нагревается и загрязняется. Этот тип водооборота представляет комбинацию водо-оборотов первого и второго типов (рис. 3.4).

Рисунок 3.4 – Цикл с очисткой и охлаждением оборотной воды:

  1. Технологическая установка (цех);
  2. Насосная станция;
  3. Градирня (бассейн);
  4. Очистные сооружения;
  5. Камера для пополнения потерь воды

Критерием эффективности водооборотного цикла является коэффициент использования воды:

  • Kв=\frac{Vз-Vсб}{Vз}
    (3.1)
  • где: V з и V сб - количества забираемой из источника свежей воды и сбрасываемой в водоем сточной воды соответственно. В химической промышленности доля оборотного водоснабжения достигает 85 - 90%.

2. Источники водоснабжения химических производств

Общее количество воды на Земле составляет 1,386*10 9 км 3 (1,386*10 18 м 3) или 1,4*10 18 тонн. Большая часть этой воды находится в постоянном кругообороте под воздействием тепловой энергии солнца и теплоты земных недр. Природная вода подразделяется на атмосферную, поверхностные воды, подземные воды и морскую (океанскую) воду.

Атмосферная вода, выпадающая в виде дождя и снега, содержит минимальное количество примесей, главным образом, в виде растворенных газов (кислорода, оксида углерода (II), азота, сероводорода), бактерий, а в промышленных районах также оксиды азота и серы и различные органические вещества.

Поверхностные воды представляют воды открытых водоемов: рек, озер, каналов, водохранилищ. В состав поверхностных вод входят различные минеральные и органические вещества, природа и концентрация которых зависят от климатических, геоморфологических, почвенно-геологических условий, а также от агро- и гидротехнических методов, развития промышленности в регионе и других факторов.

К подземным водам относятся воды артезианских скважин, колодцев, ключей и гейзеров. Для них характерно высокое содержание минеральных солей, выщелачиваемых из почвы и осадочных пород, и малое содержание органических веществ.

Морская вода представляет многокомпонентный раствор электролитов и содержит практически все элементы, входящие в состав литосферы. В ней растворены также различные газы.

В зависимости от солесодержания природные воды делятся на пресные (содержание солей менее 1 г/кг), солоноватые (содержание солей 1-10 г/кг) и соленые (содержание солей более 10 г/кг). Из общего объема гидросферы планеты запасы пресных вод составляют всего 0,03%, при этом источниками промышленного водоснабжения становятся, преимущественно, только речные воды, что связано со значительной протяженностью их береговой линии. В настоящее время на промышленные цели в РФ расходуется до 9% общего стока пресной воды, что составляет 700 куб. км в год.

Вода, используемая в химической промышленности (технологическая вода) должна удовлетворять по качеству определенным требованиям того или иного производства. Качество воды определяется совокупностью ее физических и химических характеристик, к которым относятся: цвет, прозрачность, запах, общее солесодержание, жесткость, окисляемость, реакция (рН), которые зависят от содержания в воде различных примесей. Для промышленных вод важнейшими из этих характеристик являются жесткость, окисляемость, реакция и содержание примесей различной дисперсности.

Жесткость - свойство воды, обусловленное присутствием в ней солей кальция и магния. В зависимости от природы анионов различают временную (устранимую, карбонатную) жесткость, зависящую от наличия в воде бикарбонат-ионов HCO - , Жв и постоянную (некарбонатную) жесткость, вызываемую присутствием хлорид-ионов Cl - , нитрат-ионов NO 3 - , и сульфат-ионов SO 4 2- , и постоянной жесткости называется общей жесткостью воды:

Жо = Жп + Жв. (3.2)

Жесткость воды выражается суммой концентраций ионов кальция и магния, содержащихся в 1 литре воды, то есть в ммоль/дм 3 . По значению общей жесткости воды делятся на мягкую (Ж о менее 2), средней жесткости (Ж 0 = 2-10 ммоль/л) и жесткую (Ж о более 10).

Окисляемость - свойство воды, обусловленное присутствием в ней органических веществ, легкоокисляющихся соединений железа и сероводорода, способных окисляться различными окислителями. Так как состав этих примесей неопределенен, окисляемость воды выражается в количестве перманганата калия или эквивалентном ему количестве кислорода, затраченного на окисление 1 литра воды, то есть мг/л.

Активная реакция воды характеризует ее кислотность и щелочность. Она зависит от присутствия в воде некоторых газов, реагирующих с водой (хлор, оксид углерода и др.), растворимых гуминовых кислот и веществ, вносимых в водоем промышленными стоками. Для большинства природных вод активная среда характеризуется величиной рН=6,5-8,5.

3. Промышленная водоподготовка

Вредное влияние примесей, содержащихся в промышленной воде, зависит от их химической природы, концентрации, дисперсного состояния, а также технологии конкретного производства, использующего воду. Все вещества, присутствующие в воде, могут находиться в виде истинного раствора (соли, газы, некоторые органические соединения, в коллоидном состоянии (алюмо- и железосиликаты, некоторые гидроксиды, кремневая кислота, органические соединения типа лигнина и др.) и во взвешенном состоянии (глинистые, песчаные и известковые частицы).

Растворенные в воде вещества образуют при нагреве накипь на стенках аппаратуры и вызывают коррозионное разрушение ее. Коллоидные примеси вызывают загрязнение диафрагм электролизеров, вспенивание воды. Грубодисперсные взвеси засоряют трубопроводы, снижая их производительность, могут вызвать их закупорку. Все это вызывает необходимость предварительной подготовки воды, поступающей на производство водоподготовки.

Водоподготовкой называют комплекс операций по удалению из природной воды вредных для производства примесей, содержащихся в ней в виде взвесей, коллоидных частиц, растворенных солей и газов. В водоподготовку входят операции осветления, умягчения, дегазации, а в отдельных случаях обессоливания и для питьевой воды обеззараживания. Схема промышленной водоподготовки приведена на рис. 3.5.

Рисунок 3.5 – Схема промышленной водоподготовки

Осветление воды достигается отстаиванием ее с последующим фильтрованием через зернистый материал различной дисперсности. Для коагуляции коллоидных примесей и абсорбции окрашенных веществ, содержащихся в воде, к ней добавляют электролиты – сульфаты алюминия и железа.

Обеззараживание воды обеспечивается ее хлорированием (Ca(ClO) 2 хлорная известь) или озонированием.

Дегазация – удаление из воды растворенных газов достигается химическим способом, при котором газы поглощаются химическими реагентами, например, в случае диоксида углерода:

  • CO2 + Ca(OH)2 = CaCO3 + H2O

или физическими способами термической деаэрации на воздухе или в вакууме.

Обессоливание применяется в тех производствах, где к воде предъявляются особо жесткие требования по чистоте, например, при получении полупроводниковых материалов, химически чистых реактивов, фармацевтических препаратов. Обессоливание воды достигается методом ионного обмена, дистилляцией и электродиализом.

Метод ионного обмена основан на свойстве некоторых твердых тел (ионитов) поглощать из раствора ионы в обмен на эквивалентное количество других ионов того же знака. Иониты подразделяются на катиониты и аниониты.

Катиониты - нерастворимые в воде вещества, которые являются солями или кислотами с анионом, который обусловливает нерастворимость в воде; катион (натрий или водород) способен вступать в обменную реакцию с катионами раствора. Катиониты соответственно называются Na - катионитами и H - катионитами.

Аниониты - основания или соли с твердым, нерастворимым катионом. Они содержат подвижную гидроксильную группу (OH - аниониты).

Соответственно, процессы ионного обмена подразделяются на H(Na) – катионирование, например:

  • Na2[Кат] + Ca(HCO3)2 = Ca[Кат] +2NaHCO3

и анионирование, например:

  • An + HCl→ An + H 2 O

где: [Кат] и [Ан] - не участвующая в обмене матрица ионита.

Поскольку процесс ионного обмена обратим, установление равновесия в системе означает прекращение процесса обессоливания. Поглощающая способность ионита характеризуется его обменной емкостью, равной количеству ионов кальция и магния, которое может поглотить единица объема или массы ионита, выраженное в граммэквивалентах: г-экв/м 3 и г-экв/кг. От величины обменной емкости при данном объеме ионита зависит время рабочего цикла ионитовых фильтров. При насыщении ионита он может быть регенерирован промывкой растворами для Н - катионитов кислоты, а катионитов хлорида натрия и для анионитов раствором щелочи. В приведенных выше примерах работы анионитов при этом протекают реакции:

  • Ca[Кат] +2NaCl = Na2[Кат] + CaCl2
    и
  • An + KOH = An + KCl

Полное обессоливание воды обеспечивается ее дистилляцией (термическое обессоливание) обычно после того, как вода предварительно очищена с помощью ионитовых фильтров.

На рис. 3.6 приведена схема обессоливания воды методом ионного обмена.

Рисунок 3.6 – Схема установки для обессоливания воды:

1 - катионитный фильтр; 2 - анионитный фильтр;

3 - дегазатор; 4 - сборник очищенной воды

Вода последовательно проходит через катионитный и анионитный фильтры и поступает распыляясь в дегазатор, где из нее удаляются растворенные диоксид углерода, кислород и другие газы. Для регенерации катионита в фильтр периодически подается кислота или раствор хлорида натрия, для регенерации анионита – раствор щелочи.

Электродиализом называется процесс диализа под воздействием электрического поля. При этом выделение солей из диализуемого раствора происходит в результате перемещения ионов через пористые мембраны, содержащие катионит (у катода) и анионит (у анода), с последующим их разрядом на электродах. На рис. 3.7 представлена схема электродиализатора для обессоливания воды.

Рисунок 3.7 – Схема электродиализатора: 1 - электроды; 2 - катионитовая мембрана; 3 - анионитовая мембрана; 4 - внутренняя камера; 5 - внешние камеры

Одной из основных и обязательных операций водоподготовки технологической воды является ее умягчение.

Умягчением называется обработка воды для понижения ее жесткости, то есть уменьшения концентрации ионов Са +2 различными физическими, химическими и физико-химическими методами.

При физическом методе воду нагревают до кипения, в результате чего растворимые гидрокарбонаты кальция и магния превращаются в их карбонаты, выпадающие в осадок:

  • Ca(HCO3)2 = CaCO3 + CO2 +H2O

Этим методом удаляется только временная жесткость.

К химическим методам умягчения относятся фосфатный и известковосодовый, заключающиеся в обработке воды тринатрийфосфатом или смесью гидроксида кальция и карбоната натрия. В первом случае протекает реакция образования нерастворимого трикальцийфосфата, выпадающего в осадок:

  • 2Na 3 PO4 + 3CaSO 4 = Ca 3 (PO 4) 2 + 3Na 2 SO 4

Во втором случае протекают две реакции. Бикарбонаты кальция и магния реагируют с гидроксидом кальция, чем устраняется временная жесткость:

  • Ca(HCO3)2 + Ca(OH)2 = 2CaCO3 + 2H2O
    ,

а сульфаты, нитраты и хлориды - с карбонатом натрия, чем устраняется постоянная жесткость:

  • CaSO4 + Na2CO3 = CaCO3 + Na2SO4

Физико-химический метод ионнообменного умягчения воды был описан выше.

Водоподготовка в химическом производстве представляет весьма трудоемкий процесс и требует больших капитальных и эксплуатационных затрат. На современных химических предприятиях доля капитальных затрат на водоподготовку составляет 10-15% общего объема расходов на производство химической продукции.

Современные схемы промышленной водоподготовки включают все основные операции: осветление в грубых и коагуляционных отстойниках, фильтрование через зернистый материал, умягчение методом ионного обмена, дегазацию. На рис. 3.8 представлена подобная схема водоподготовки промышленных вод.

Рисунок 3.8 – Схема подготовки промышленных вод: 1 - грубый отстойник; 2 - смеситель коагулянта; 3 - коагуляционный отстойник; 4 - фильтр; 5 - катионитный фильтр; 6 - анионитный фильтр; 7 - теплообменник; 9 - деаэратор

Пример решения задачи

К 25 см 3 водопроводной воды прибавили 5 см 3 аммиачной буферной смеси и индикатор эриохром черный Т. Полученный раствор оттитровали 0,02 н раствором ЭДТА до перехода окраски индикатора из винно-красной в ярко-голубую. Титрование повторили 3 раза. Средний объём ЭДТА, израсходованный на титрование составил V 1 ср (ЭДТА) см 3 . Аналогичный эксперимент повторили с водопроводной водой, прокипяченной в течение 30 минут, Средний объём ЭДТА, израсходованный на титрование составил V 2ср (ЭДТА) см 3 . Рассчитать общую и постоянную жесткость водопроводной воды.

V 1 ср (ЭДТА) = 3, 00 см 3 , V 2ср (ЭДТА) = 2,50 см 3 .

1) Вычисление общей жесткости воды производят по формуле

  • Жобщ = \frac{Сэкв(ЭДТА)\cdot V1ср(ЭДТА)\cdot 1000}{Vа.ч.(H2O)}

Ж(общ ) - общая жесткость воды, ммоль/дм 3 ;

С эк (ЭДТА) - молярная концентрация эквивалентов раствора ЭДТА, моль/дм 3 ;

V 1 ср (ЭДТА) – средний объем ЭДТА, израсходованный на титрование воды до кипячения, см 3 ;

V а.ч. (Н 2 О) - аликвотная часть анализируемой воды, см 3 .

Ж(общ) = 0,02*3,00*1000/25,00 = 2.4 ммоль/дм 3

2) Вычисление временной жесткости воды производят по формуле

где V 2 ср (ЭДТА) – средний объём воды, израсходованный на титрование воды после кипячения, см 3 .

Ж (вр) = 0,02*2,50*1000/25,00 = 2,0 ммоль/дм 3

3) Постоянную жесткость рассчитывают по разности общей и временной

Ж п = Жобщ – Жвр = 2,4 – 2,0 = 0,4 ммоль/ дм 3